ECOREGION Widely distributed and migratory stocks
 STOCK
 Blue whiting in Subareas I-IX, XII, and XIV

Advice for 2014

ICES advises on the basis of the management plan agreed by Norway, the EU, the Faroe Islands, and Iceland that landings in 2014 should be no more than 948950 tonnes. All catches are assumed to be landed.

Stock status

F (Fishing Mortality)	
20102011	2012
MSY (F MSY)	- Appropriate
Precautionary approach $\left(\mathrm{F}_{\mathrm{pa}}, \mathrm{F}_{\text {lim }}\right)$	- Harvested sustainably
Management plan ($\mathrm{F}_{\text {MP }}$) \boldsymbol{X}	- Below target
SSB (Spawning-Stock Biomass)	
20112012	2013
MSY ($\mathrm{B}_{\text {trigger }}$)	(Above trigger
Precautionary approach $\left(\mathrm{B}_{\mathrm{pa}}, \mathrm{B}_{\text {lim }}\right)$	\bigcirc Full reproductive capacity
Management plan (SSB MP) \bigcirc -	- Above trigger

Figure 9.4.5.1 Blue whiting in Subareas I-IX, XII, and XIV. Summary of stock assessment.
SSB has almost doubled from 2010 (2.9 million tonnes) to 2013 (5.5 million tonnes) and is well above B_{pa} (2.25 million tonnes). This increase is due to the lowest Fs in the time-series in 2011 and 2012, in combination with increased recruitment since 2010.

Management plans

A management plan (Section 9.4.5.1 Annex) was agreed by Norway, the EU, the Faroe Islands, and Iceland in 2008. The plan uses i) a target fishing mortality ($\mathrm{F}=0.18$) if SSB is above $\operatorname{SSB}_{\mathrm{MP}}\left(=\mathrm{B}_{\mathrm{pa}}\right)$, ii) a linear reduction to $\mathrm{F}=0.05$ if SSB is between $B_{p a}$ and $B_{\text {lim }}$, and iii) $F=0.05$ if SSB is below $B_{l i m}$. ICES evaluated the plan in 2008 and concluded that it is in accordance with the precautionary approach (PA; ICES, 2008). ICES evaluated a NEAFC request concerning an alternative management plan in May 2013 (ICES, 2013a) and further in October 2013 (ICES, 2013b).

Biology

Blue whiting is widely distributed in the eastern part of the North Atlantic from Norway to the south of Portugal, with the highest concentrations along the edge of the continental shelf between 300 and 600 m . Most spawning takes place along the shelf edge and on banks west of the British Isles. Juveniles are also widely distributed, including in the Bay of Biscay and Iberian waters, with the main nursery area believed to be in the Norwegian Sea.

Environmental influence on the stock

The position and strength of the North Atlantic subpolar gyre (SPG) appears to influence the spawning distribution of blue whiting (Hátún et al., 2009). The strong gyre constrains spawning distribution. This gyre may influence recruitment success through food availability and/or predation levels (Payne et al., 2012). However, these mechanisms are not fully understood and are being explored further.

The fishery

The main fisheries on blue whiting in 2012 were conducted west of Scotland, around the Porcupine Bank, and south of the Faroe Islands. Most blue whiting catches occurred in the first half of the year. Catches have become increasingly used for human consumption rather than industrial purposes.

Catch distribution Total landings (2012) $=384 \mathrm{kt}$ (mainly pelagic trawl). Discards are considered negligible.

Effects of the fisheries on the ecosystem

Blue whiting feed on zooplankton and small fish in the same areas as herring and mackerel, but at greater depth.

Quality considerations

The principal survey for the adult part of this stock conducted in 2013 had high quality coverage of the survey area in space and time and is considered to have provided good quality data. Incoming recruitment is poorly estimated due to a lack of juvenile indices suitable for inclusion in the assessment model. The new modelling framework used is likely to result in more stable assessments than in previous years.

Figure 9.4.5.2 Blue whiting in Subareas I-IX, XII, and XIV. Historical assessment results. Horizontal lines represent reference points.

Scientific basis	
Assessment type	Age-based analytical (SAM). Input data Commercial catches from international landings, ages and length frequencies from catch sampling.
	One survey index (International blue whiting spawning stock survey (IBWSS) 2004-2013, excluding 2010).
	No commercial indices.
Annual maturity data from fixed values, estimated in 1994 by combining maturity ogives	
from the southern and northern areas.	
	Natural mortalities fixed at 0.2, derived in the 1980s from age compositions before the
industrial fishery started.	

ECOREGION Widely distributed and migratory stocks STOCK
 Blue whiting in Subareas I-IX, XII, and XIV

Reference points

	Type	Value	Technical basis
Management plan	$\mathrm{SSB}_{\mathrm{MP}}$	2.25 million t	B_{pa}
	F_{MP}	0.18	Management strategy evaluation conducted in 2008 (Anon., 2008; ICES, 2008).
	MSY $_{\text {trigger }}$	2.25 million t	B_{pa} ICES, 2013a).
	$\mathrm{F}_{0.1}$	0.22	Yield per recruit (ICES, 2013a, 2013c).
	$\mathrm{F}_{\mathrm{MSY}}$	0.30	Simulations in 2013 (ICES, 2013a).
Precautionary approach	$\mathrm{B}_{\text {lim }}$	1.50 million t	Approximately $\mathrm{B}_{\text {loss }}$ (confirmed by ICES, 2013a).
	B_{pa}	2.25 million t	$\mathrm{B}_{\text {lim }} \operatorname{exp(1.645\times \sigma),\text {with}\sigma =0.25.}$
	$\mathrm{F}_{\text {lim }}$	0.48	Equilibrium stochastic simulations (ICES, 2013a).
	F_{pa}	0.32	Based on $\mathrm{F}_{\text {lim }}$ and assessment uncertainties (ICES, 2013a).

(unchanged since: 2013)
$\mathrm{F}_{\text {MSY }}=0.30$ gives a high yield and a low risk of $\mathrm{SSB}<\mathrm{B}_{\text {lim }}$.

Outlook for 2014

Basis: $\mathrm{F}(2013)=0.14$ (catch constraint $=643=\mathrm{TAC}) . \mathrm{SSB}(2014)=6715 . \mathrm{R}(2013), \mathrm{R}(2014)$, and $\mathrm{R}(2015)=\mathrm{GM}(1981-$ 2010 $)=13463$ million at age 1 .

Rationale	$\begin{aligned} & \text { Catch } \\ & \text { (2014) } \end{aligned}$	Basis	$\begin{gathered} F \\ 2014 \end{gathered}$	$\begin{array}{r} \text { SSB } \\ (2015) \end{array}$	$\begin{array}{r} \text { \% SSB } \\ \text { change }^{1)} \end{array}$	$\begin{array}{r} \text { \% TAC } \\ \text { change } \end{array}$
Management plan	948.950	$\begin{gathered} F=0.18 \text { for } \\ \text { SSB }(2014)>2250 \end{gathered}$	0.18	6958	4	48
NEAFC request	1140	Management plan, $\mathrm{F}=0.22$	0.22	6767	1	77
NEAFC request	1279	Management plan, $\mathrm{F}=0.25$	0.25	6635	-1	99
NEAFC request	1502	Management plan, $F=0.30$	0.30	6422	-4	134
MSY framework	1502	$\mathrm{F}_{\mathrm{MSY}}=0.30$	0.30	6422	-4	134
$\mathrm{F}_{\mathrm{pa}} 0.32$	1588	F_{pa}	0.32	6333	-6	144
$\mathrm{F}_{\text {lim }} 0.48$	2232	$\mathrm{F}_{\text {lim }}$	0.48	5723	-15	247
Zero catch	0		0.00	7877	17	-100
$1.00 \times \mathrm{F}$ (2012)	562	$1.00 \times \mathrm{F}(2012)$	0.10	7336	9	-13
$0.50 \times \mathrm{F}(2013)$	401	$0.50 \times \mathrm{F}(2013)$	0.07	7484	11	-38
Status quo F	777	$1.00 \times \mathrm{F}(2013)$	0.15	7131	6	21
$1.50 \times \mathrm{F}(2013)$	1129	$1.50 \times \mathrm{F}(2013)$	0.22	6779	1	75
$2.00 \times \mathrm{F}(2013)$	1460	$2.00 \times \mathrm{F}(2013)$	0.29	6465	-4	127

Weights in thousand tonnes.

1) SSB 2015 relative to SSB 2014.
${ }^{2)}$ Catch 2014 relative to TAC 2013 (643).

Management plan

The management plan agreed by Norway, EU, the Faroe Islands, and Iceland in November 2008 (see Section 9.4.5.1 Annex) implies a TAC of 949000 tonnes in 2014, compared to 643000 tonnes in 2013. This is expected to lead to an increase in SSB in 2015 to 6.96 million tonnes, which is above SSB $_{\mathrm{MP}}$. The stock projection for 2013-2015, with uncertainties included for this option, is shown in Figure 9.4.5.6.

MSY approach

Following the ICES MSY framework implies a TAC of 1502000 t in 2014 based on a fishing mortality at $\mathrm{F}_{\text {MSY }}=0.30$. This is expected to lead to a decrease in SSB in 2015 to 6.42 million tonnes, which is above MSY $\mathrm{B}_{\text {trigger }}$ (2.25 million tonnes).

Precautionary approach

Following the ICES precautionary approach implies a TAC of 1588000 tonnes in 2014 based on a fishing mortality at $\mathrm{F}_{\mathrm{pa}}=0.32$. This is expected to lead to a decrease in SSB in 2015 to 6.33 million tonnes, which is above B_{PA} (2.25 million tonnes).

Additional considerations

Management considerations

The assessment shows a moderate uncertainty of the absolute estimate of F and SSB, and a higher uncertainty on the recruiting year classes. Due to good planning and favorable weather conditions the implementation of the survey in 2013 resulted in high quality data, even though the Norwegian vessel did not participate in 2013. It is essential that this survey be maintained and it is important to maintain good geographical survey coverage within the agreed time window to avoid increases in assessment uncertainty.

Recruitment (age 1) is estimated significantly higher in 2011-2013 than in the years 2007-2009 with the historically low recruitments. The forecast and catch options for 2014 use recruitment (age 1) in 2012 from the assessment and an assumed average recruitment in 2013-2015. A TAC derived from the target F at 0.18 (or from higher F at 0.22) from the management plan is expected to lead to an SSB well above $B_{p a}$ in 2015.

There are uncertainties about the stock structure even though ICES (2012b) evaluated available evidence on sub-stock structure and came to the conclusion that there is no scientific evidence in support of multiple stocks with distinct spawning locations or timings. The emerging picture is one of a single stock whose large-scale spatial spread varies as a function of hydrographical conditions and total abundance; this is commonly described as an abundance-occupancy relationship. Further, there seem to be a number of core nursery and feeding areas with marginal areas being occupied at times of high stock abundance. As a result, ICES considers blue whiting in ICES Subareas I-IX, XII, and XIV as a single stock for assessment purposes.

Data and methods

The assessment is based on catch-at-age data from commercial catches in 1981-2012 and one international blue whiting spawning stock survey (IBWSS) 2004-2013. The IBWSS survey is the only survey that covers almost the entire distributional area of the spawning stock.

Recruitment in the forecast is based on a qualitative analysis of trawl surveys covering parts of the distribution area for juveniles. The five available indices indicate that the 2012 year class is near average. The new information regarding the 2011 year class suggests that this is at or above average. ICES therefore decided to use the geometric mean of the whole period (1981-2010) for the 2012 and 2013 year classes, and the estimate from the assessment for the 2011 year class (above the geometric mean).

Limited information was available on discarding and discards were therefore not included in the assessment. However, discarding is considered to be minor.

Comparison with previous assessment

In the 2013 assessment, SSB in 2012 was estimated at 9% higher than in the previous assessment. Estimated fishing mortality in 2011 was 7% lower than in the previous assessment. The basis for advice was the same as last year.

Sources

Anon. 2008. Report of the Working Group established by the Blue Whiting Coastal States on Blue Whiting Management Strategies, 26-30 May 2008, Charlottenlund Castle, Denmark. 65 pp.
Hátún, H., Payne, M. R., and Jacobsen, J. A. 2009. The North Atlantic subpolar gyre regulates the spawning distribution of blue whiting (Micromesistius poutassou). Canadian Journal of Fisheries and Aquatic Sciences, 66: 759-770.
ICES. 2008. Report of the ICES Advisory Committee, 2008. ICES Advice 2008. Book 9. 345 pp.
ICES. 2009a. Report of the Workshop on Blue Whiting Recruitment (WKBLUR), 10-12 November 2009, ICES Headquarters, Copenhagen, Denmark. ICES CM 2009/RMC:09. 62 pp.
ICES. 2009b. Report of the Stock Identification Methods Working Group (SIMWG). ICES CM 2009/LRC:12.
ICES. 2010a. Report of the Working Group on Northeast Atlantic Pelagic Ecosystem Surveys (WGNAPES), 17-20 August 2010, Hamburg, Germany. ICES CM 2010/SSGESST:20.
ICES. 2010b. Blue whiting in Subareas I-IX, XII, and XIV (Combined stock). In Report of the ICES Advisory Committee, 2010. ICES Advice 2010, Book 9: 77-88.
ICES. 2011. Report of the Working Group on Northeast Atlantic Pelagic Ecosystem Surveys (WGNAPES), 16-19 August 2011, Kaliningrad, Russia. ICES CM 2011/SSGESST:16.
ICES. 2012a. Report of the Working Group on Widely Distributed Stocks (WGWIDE), 21-27 August 2012, Lowestoft, UK. ICES CM 2012/ACOM:15.
ICES. 2012b. Report of the Benchmark Workshop on Pelagic Stocks (WKPELA 2012), 13-17 February 2012, Copenhagen, Denmark. ICES CM 2012/ACOM:47.
ICES. 2013a. NEAFC request to ICES to evaluate the harvest control rule element of the long-term management plan for blue whiting. Special request, Advice May 2013. In Report of the ICES Advisory Committee, 2013. ICES Advice 2013, Book 9, Section 9.3.3.1.
ICES. 2013b. NEAFC request on additional management plan evaluation for blue whiting. Special request, Advice October 2013. In Report of the ICES Advisory Committee, 2013. ICES Advice 2013, Book 9, Section 9.3.3.7.
ICES. 2013c. Report of the Working Group on Widely Distributed Stocks (WGWIDE), 27 August-02 September 2013, ICES Headquarters, Copenhagen, Denmark. ICES CM 2013/ACOM:15.
Payne, M. R., Egan, A., Fässler, S. M. M., Hátún, H., Holst, J. C., Jacobsen, J. A., Slotte, A., et al. 2012. The rise and fall of the NE Atlantic blue whiting (Micromesistus poutassou). Marine Biology Research, 8: 475-487.

Figure 9.4.5.3
Blue whiting in Subareas I-IX, XII, and XIV. Stock-recruitment relationship.

Blue whiting in Subareas I-IX, XII, and XIV. Total stock biomass and 50\% and 95\% confidence limits from the IBWSS survey, 2004-2013. The SSB index from the 2010 survey was excluded from the assessment.

Figure 9.4.5.5
Blue whiting in Subareas I-IX, XII, and XIV. Total blue whiting catches (t) in 2012 by ICES rectangle. Catches below 10 t are not shown on the map.

Figure 9.4.5.6
Blue whiting in Subareas I-IX, XII, and XIV. Stock projection 2013-2015 following the management plan. Mean value and 95\% confidence intervals are shown.

Table 9.4.5.1 Blue whiting in Subareas I-IX, XII, and XIV. ICES advice, management, and landings.

Year	ICES Advice	Predicted catch corresp. to advice	Agreed TAC	ICES catch
1987	TAC for northern areas; no advice for southern areas	950	-	665
1988	TAC for northern areas; no advice for southern areas	832	-	558
1989	TAC for northern areas; no advice for southern areas	630	-	627
1990	TAC for northern areas; no advice for southern areas	600	-	562
1991	TAC for northern areas; no advice for southern areas	670	-	370
1992	No advice	-	-	475
1993	Catch at status quo F (northern areas); no assessment for southern areas	490		481
1994	Precautionary TAC (northern areas); no assessment for southern areas	485	$650{ }^{1}$	459
1995	Precautionary TAC for combined stock	518	$650{ }^{1}$	579
1996	Precautionary TAC for combined stock	500	$650{ }^{1}$	646
1997	Precautionary TAC for combined stock	540		672
1998	Precautionary TAC for combined stock	650		1125
1999	Catches above 650000 t may not be sustainable in the long run	650		1256
2000	F should not exceed the proposed F_{pa}	800		1412
2001	F should not exceed the proposed F_{pa}	628		1780
2002	Rebuilding plan	0		1556
2003	F should be less than the proposed F_{pa}	600		2321
2004	Achieve 50\% probability that F will be less than F_{pa}	925		2378
2005	Achieve 50\% probability that F will be less than F_{pa}	1075		2027
2006	F old management plan	1500	2100^{2}	1966
2007	F should be less than the proposed F_{pa}	980	$1847{ }^{3}$	1612
2008	F should be less than F_{pa}	835	$1250{ }^{4}$	1246
2009	Maintain stock above $\mathrm{B}_{\text {ра }}$	384	$606{ }^{5}$	636
2010	Follow the agreed management plan	540	548	540
2011	See scenarios	40-223	40	105
2012	Follow the agreed management plan	391	391	384
2013	Follow the agreed management plan	643	643	
2014	Follow the agreed management plan	948.950		

Weights in thousand tonnes.
${ }^{1}$ NEAFC proposal for NEAFC regions 1 and 2.
${ }^{2}$ Agreed TAC from four Coastal States of 2 million tonnes, and an additional allocation to Russia in the international zone of 100000 t.
${ }^{3}$ Agreed TAC from four Coastal States of 1.7 million tonnes, and an additional allocation to Russia and Greenland of 147000 t .
${ }^{4}$ Agreed TAC from four Coastal States of 1.1 million tonnes, and an additional allocation to Russia and Greenland.
${ }^{5}$ Agreed TAC from four Coastal States of 0.59 million tonnes, and an additional allocation to Russia (0.016 million tonnes).

Table 9.4.5.2
Blue whiting in Subareas I-IX, XII, and XIV. Landings (tonnes) by country for the period 2004-2012, as estimated by the Working Group.

Country	2004	2005	2006	2007	2008	2009	2010	2011	2012
Denmark	89500	41450	56979	48659	18134	248	140	165	340
Estonia	*								
Faroes	322322	266799	321013	317859	225003	58354	49979	16405	43290
France		8046	18009	16638	11723	8831	7839	4337	9799
Germany	15293	22823	36437	34404	25259	5044	9108	278	6239
Iceland	379643	265516	309508	236538	159307	120202	87942	5887	63056
Ireland	75393	73488	54910	31132	22852	8776	8324	1195	7557
Japan									
Latvia									
Lithuania			4635	9812	5338				
Netherlands	95311	147783	102711	79875	78684	35686	33762	4595	26526
Norway	957684	738490	642451	539587	418289	225995	194317	20539	118832
Poland									
Portugal	3937	5190	5323	3897	4220	2043	1482	603	1955
Spain	15612	17643	15173	13557	14342	20637	12891	2416	6726
Sweden **	19083	2960	101	464					
UK (England)***									1590
UK (Scotland)	57028	104539	72106	43540	38150	173	5496	1331	6305
Russia	346762	332226	329100	236369	225163	149650	112553	45841	88303
Uanllocated									3499
TOTAL	2377568	2026953	1968456	1612330	1246465	635639	523832	103592	384016

* Reported to the EU but not to the ICES WGNPBW. (Landings of 19467 tonnes).
** Imprecise estimates for Sweden: reported catch of 34265 t in 1993 is replaced by the mean of 1992 and 1994, i.e. 2867 t , which is used in the assessment.
*** From 2012 only UK split into England and Scotland.

Area	Norwegian Sea fishery (SAs 1+2; Divs. Va, XIVa-b)	Fishery in the spawning area (SA XII; Divs. Vb, VIa-b, VIIa-c)	Directedand mixed fisheries in the North Sea (SA IV; Div. IIIa)	Total northern areas	Total southern areas (SAs VIII+IX; Divs. VIId-k)	$\begin{gathered} \text { Grand } \\ \text { total } \end{gathered}$
1988	55829	426037	45143	527009	30838	557847
1989	42615	475179	75958	593752	33695	627447
1990	2106	463495	63192	528793	32817	561610
1991	78703	218946	39872	337521	32003	369524
1992	62312	318081	65974	446367	28722	475089
1993	43240	347101	58082	448423	32256	480679
1994	22674	378704	28563	429941	29473	459414
1995	23733	423504	104004	551241	27664	578905
1996	23447	478077	119359	620883	25099	645982
1997	62570	514654	65091	642315	30122	672437
1998	177494	827194	94881	1099569	29400	1128969
1999	179639	943578	106609	1229826	26402	1256228
2000	284666	989131	114477	1388274	24654	1412928
2001	591583	1045100	118523	1755206	24964	1780170
2002	541467	846602	145652	1533721	23071	1556792
2003	931508	1211621	158180	2301309	20097	2321406
2004	921349	1232534	138593	2292476	85093	2377569
2005	405577	1465735	128033	1999345	27608	2026953
2006	404362	1428208	105239	1937809	28331	1966140
2007	172709	1360882	61105	1594695	17634	1612330
2008	68352	1111292	36061	1215704	30761	1246465
2009	46629	533996	22387	603012	32627	635639
2011	20599	72279	7524	100401	3191	103592
2012	24391	324545	5678.346	354614	29402	384016

Table 9.4.5.4 Blue whiting in Subareas I-IX, XII, and XIV (Combined Stock). Summary of stock assessment.

Year	Recruitment Age 1 thousands	SSB	Landings	Mean F
	tonnes	Tonnes	Ages 3-7	
1981	4004783	2916807	922980	0.275
1982	5378930	2319820	550643	0.222
1983	21274080	1903110	553344	0.263
1984	20645336	1848712	615569	0.322
1985	10099536	2233320	678214	0.344
1986	7018078	2380926	847145	0.457
1987	8632114	1916479	654718	0.425
1988	6205832	1613635	552264	0.438
1989	8520623	1550364	630316	0.511
1990	17663307	1341099	558128	0.532
1991	9248760	1732368	364008	0.268
1992	7167016	2533215	474592	0.232
1993	5309456	2610363	475198	0.209
1994	7377903	2497998	457696	0.195
1995	9761923	2282998	505175	0.249
1996	29063685	2178180	621104	0.306
1997	45947041	2470670	3752752	639680

*SSB in 2013 is based on survivors, age 1 numbers as in 2012 and mean weight-at-age as in 2012.

9.4.5.1 Annex

The management plan below was agreed by Norway, the EU, the Faroe Islands, and Iceland, and endorsed by NEAFC in November 2008.

1. The Parties agree to implement a long term management plan for the fisheries on the Blue Whiting stock, which is consistent with the precautionary approach, aiming at ensuring harvest within safe biological limits and designed to provide for fisheries consistent with maximum sustainable yield, in accordance with advice from ICES.
2. For the purpose of this long term management plan, in the following text, "TAC" means the sum of the coastal State TAC and the NEAFC allowable catches.
3. As a priority, the long term plan shall ensure with high probability that the size of the stock is maintained above 1.5 million tonnes ($B_{\text {lim }}$).
4. The Parties shall aim to exploit the stock with a fishing mortality of 0.18 on relevant age groups as defined by ICES.
5. While fishing mortality exceeds that specified in paragraph 4 and 6, the Parties agree to establish the TAC consistent with reductions in fishing mortality of 35% each year until the fishing mortality established in paragraph 4 and 6 has been reached. This paragraph shall apply only during 2009 and 2010.

For the purposes of this calculation, the fishing percentage mortality reduction should be calculated with respect to the year before the year in which the TAC is to be established. For this year, it shall be assumed that the relevant TAC constrains catches.
6. When the fishing mortality in paragraph 4 has been reached, the Parties agree to establish the TAC in each year in accordance with the following rules:

- In the case that the spawning biomass is forecast to reach or exceed 2.25 million tonnes (SSB trigger level) on 1 January of the year for which the TAC is to be set, the TAC shall be fixed at the level consistent with the specified fishing mortality.
- In the case that the spawning biomass is forecast to be less than 2.25 million tonnes on 1 January of the year for which the TAC is to be set (B), the TAC shall be fixed that is consistent with a fishing mortality given by:

$$
\mathrm{F}=0.05+\left[(\mathrm{B}-1.5)^{*}(0.18-0.05) /(2.25-1.5)\right]
$$

In the case that spawning biomass is forecast to be less than 1.5 million tonnes on 1 January of the year for which the TAC is to be set, the TAC will be fixed that is consistent with a fishing mortality given by $F=0.05$.
7. When the fishing mortality rate on the stock is consistent with that established in paragraph 4 and the spawning stock size on 1 January of the year for which the TAC is to be set is forecast to exceed 2.25 million tonnes, the Parties agree to discuss the appropriateness of adopting constraints on TAC changes within the plan.
8. The Parties, on the basis of ICES advice, shall review this long term management plan at intervals not exceeding five years and when the condition specified in paragraph 4 is reached.

