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1 Background
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Figure 1. The Faroe Islands are surrounded by a shelf comprising 15,000 km? within the 170 m bottom contour. This shelf is partly
isolated from the open ocean by a tidal front, inside of which the water circulates clockwise (Larsen et al., 2008).

Due to strong tidal currents the waters inside the front (Figure 1) are well mixed throughout the
year and support a relatively uniform shelf ecosystem distinct from the waters outside.

From the reduction in nitrate during spring, Gaard (2002) defined a “PP-index”, which
quantifies the accumulated primary production during the spring bloom inside the front. This
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This led to the hypothesis, which is tested in this study.

2 Hypothesis and Objective

Horizontal exchange controls the spring bloom inside the front

3 Deriving Horizontal Exchange Rates

We consider a 2-box model where the water inside the front is homogeneous with
temperature T; and the water outside also homogeneous, but with temperature 7,. Time
series of these temperatures are available from observations. Time series of air-sea heat flux
(g), are also available from NCEP/NCAR.
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Figure 3. Box model of Faroe Shelf.

From this, time series of horizontal exchange rate (k) may be derived as long as (7, — 7)) is not
too small.

Figure 4. Exchange rate (left axis) plotted together with average current
speeds (right axis) Jan 15t — May 1t 2013. The exchange rate seems to par-
tially fluctuate in synchrony with the averaged current speeds in the same
period, which indicates a relationship between current speeds and ex-
change rate.

Calculated exchange rate depends on tidal
currents

The computed exchange rate (Figure 4) seems to fluctuate
with a period of 14 days, which indicates that the tides affect
the rate of exchange. A coherence analysis where average
values have been used is made.

Even though the coherence is not large (Figure 5), there is a
clear signal at periods around 14 days and 29 days and with
hardly any phase lag, which supports the observation that
the tides have an effect on the exchange rate.

The magnitude of the exchange rate varies interannually, (see
Figure 6) and the interannual variations in the exchange rate
are much larger than the variations in the tidal currents.

Calculated exchange rate is inversely related to

production and horizontal exchange. The relationship is
statistically significant when autocorrelation is considered
(p=0.027) and has a correlation coefficient of 0.62.

5 Discussion and Outlook
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Figure 5. Coherence squared (top panel) and phase lag (bottom panel)
between exchange rate and tidal current speed. Gray areas indicate the two
main periodes of tidal currents, 14 and 29 days.
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Figure 6. PP-index versus inverted average (Jan — Apr) exchange rate
(k). Based on observations from 1992 to 2013.

e A correlation coefficient of 0.62 supports the hypothesized link between exchange rate and the PP-index.
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Although consistent with available information, this hypothesis has lacked confirmation from direct observations.

In this study, we present a method to determine horizontal exchange rate from observations and test the validity of this hypothesis.

Figure 2. Seasonal development of the phytoplankton biomass inside the
front based on observations from different years (white) and a model run with
low and high horizontal exchange rate, as compared to the typical exchange
rate ky,. (Eliasen et al., 2005).

e This and other alternatives will be further explored in this PhD-project.
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