## Skjal 1.

Report of the North-Western Working Group (NWWG) 2016. ICES C.M. 2016/ACOM:08

## 2 Demersal Stocks in the Faroe Area (Division 5b and Subdivision 2a4)

### 2.1 Overview

### 2.1.1 Fisheries

The main fisheries in Faroese waters are mixed-species, demersal fisheries and single species pelagic fisheries. The demersal fisheries are mainly conducted by Faroese vessels, whereas the pelagic fisheries are conducted both by Faroese vessels and by foreign vessels licensed through bilateral and multilateral fisheries agreements. The usual picture changed in 2011, however, since no mutual agreement could be reached between the Faroe Islands and the EU and Norway, respectively, due to the dispute regarding the share of mackerel. From 2013, the agreement has been re-established.

Pelagic Fisheries. Three main species of pelagic fish are fished in Faroese waters: blue whiting, herring and mackerel; several nations participate. The Faroese pelagic fisheries are conducted by purse-seiners, larger purse-seiners also equipped for pelagic trawling and trawlers otherwise performing demersal fisheries. The pelagic fishery by Russian vessels is conducted by large factory trawlers. Other countries use purseseiners and factory trawlers.

Demersal Fisheries. Although they are conducted by a variety of vessels, the demersal fisheries can be grouped into fleets of vessels operating in a similar manner. Some vessels change between longlining, jigging and trawling, and they therefore can appear in different fleets. The number of licenses can be found in Table 2.3. The grouping of the vessels under the management scheme can be seen in section 2.1.3.

### 2.1.2 Fisheries and management measures

The fishery around the Faroe Islands has for centuries been an almost free international fishery involving several countries. Apart from a local fishery with small wooden boats, the Faroese offshore fishery started in the late 19th century. The Faroese fleet had to compete with other fleets, especially from the UK with the result that a large part of the Faroese fishing fleet became specialized in fishing in other areas. So except for a small local fleet most of the Faroese fleet were fishing around Iceland, at Rockall, in the North Sea and in more distant waters like the Grand Bank, Flemish Cap, Greenland, the Barents Sea and Svalbard.

Up to 1959, all vessels were allowed to fish around the Faroes outside the 3 nm zone. During the 1960s, the fisheries zone was gradually expanded, and in 1977 an EEZ of 200 nm was introduced in the Faroe area. The demersal fishery by foreign nations has since decreased and Faroese vessels now take most of the catches. The fishery may be considered a multifleet and multispecies fishery as described below.

During the 1980s and 1990s the Faroese authorities have regulated the fishery and the investment in fishing vessels. In 1987 a system of fishing licenses was introduced. The demersal fishery at the Faroe Islands has been regulated by technical measures (minimum mesh sizes and closed areas). In order to protect juveniles and young fish, fishing is temporarily prohibited in areas where the number of small cod, haddock and saithe exceeds $30 \%$ (in numbers) of the catches; after 1-2 weeks, sometimes longer, the areas are again opened for fishing. A reduction of effort has been attempted through banning of new licenses and buy-back of old licenses.

A quota system, based on individual quotas, was introduced in 1994. The fishing year started on 1 September and ended on 31 August the following year. The aim of the quota system was, through restrictive TACs for the period 1994-1998, to increase the SSBs of Faroe Plateau cod and haddock to 52000 t and 40000 t , respectively. The TAC for saithe was set higher than recommended scientifically. It should be noted that especially cod and haddock but also saithe are caught in a mixed fishery and any management measure should account for this. Species under the quota system were Faroe Plateau cod, haddock, saithe, redfish and Faroe Bank cod.

The catch quota management system introduced in the Faroese fisheries in 1994 was met with considerable criticism and resulted in discarding and in misreporting of portions of the catches. Reorganization of enforcement and control did not solve the problems. As a result of the dissatisfaction with the catch quota management system, the Faroese Parliament discontinued the system as from 31 May 1996. In close cooperation with the fishing industry, the Faroese government developed a new system based on individual transferable effort quotas in days within fleet categories. The new system entered into force on 1 June 1996. The fishing year from 1 September to 31 August, as introduced under the catch quota system, has been maintained.

The individual transferable effort quotas apply to 1) the longliners less than 110 GRT, the jiggers, and the single trawlers less than 400 HP (Groups 4,5), 2) the pairtrawlers (Group 2) and 3) the longliners greater than 110 GRT (Group 3). The single trawlers greater than 400 HP were in 2011 included into the fishing days system and were allocated a number of fishing days (Tables 1 and 2). They are not allowed to fish within the 12 nautical mile limit and the areas closed to them, as well as to the pairtrawlers, have increased in area and time. Their catch of cod and haddock was before 2011 limited by maximum bycatch allocation. This fleet started to pair-trawl, and since the fiscal year 2011/12, merged with the pairtrawlers group. The single trawlers less than 400 HP are given special licenses to target flatfish inside 12 nautical miles with a bycatch allocation of $30 \%$ cod and $10 \%$ haddock. In addition, they are obliged to use sorting devices in their trawls in order to minimize their bycatches. One fishing day by longliners less than 110 GRT is considered equivalent to two fishing days for jiggers in the same gear category. Longliners less than 110 GRT could therefore double their allocation by converting to jigging. Table 2.1 shows the allocated number of fishing days by fleet group since the fiscal year 1996/1997 and in Table 2.2 is a comparison between number of allocated days and number of actually used fishing days. From Table 1 it can been seen that since 1996/1997, the number of days allocated has been reduced considerable and is now $50 \%$ of the originally allocated days. Despite this, there still are many unused days in the system (Table 2.2).

Holders of individual transferable effort quotas who fish outside the thick line on Figure 2.2 can fish for 3 days for each day allocated inside the line. Trawlers are generally not allowed to fish inside the 12 nautical mile limit. Inside the innermost thick line only longliners less than 110 GRT and jiggers less than 110 GRT are allowed to fish. The Faroe Bank shallower than 200 m is closed to trawling. Due to the serious decline of the Faroe Bank cod, the Bank has been closed since 1 January 2009 for all gears except for a minor jigging fishery during summertime.

The fleet segmentation used to regulate the demersal fisheries in the Faroe Islands and the regulations applied are summarized in Table 2.3.

The effort quotas are transferable within gear categories. The allocations of number of fishing days by fleet categories was made such that together with other regulations of the fishery they should result in average fishing mortalities on each of the 3 stocks of
0.45 , corresponding to average annual catches of $33 \%$ of the exploitable stocks in numbers. Built into the system is also an assumption that the day system is self-regulatory, because the fishery will move between stocks according to the relative availability of each of them and no stock will be overexploited. These target fishing mortalities have been evaluated during the 2005 and 2006 NWWG meetings. The realized fishing mortalities have been substantially higher than the target for cod, appear to have been almost at the target for saithe in recent years, while for haddock, fishing mortality remains below the target.

In addition to the number of days allocated in the law, it is also stated in the law what percentage of total catches of cod, haddock, saithe and redfish, each fleet category on average is expected to fish. These percentages are as follows:

| FLEET CATEGORY | COD | HADDOCK | SAITHE | REDFISH |
| :--- | :---: | :---: | :---: | :---: |
| Longliners < 110GRT, |  |  |  |  |
| Jiggers, single trawl. < 400HP | $51 \%$ | $58 \%$ | $17.5 \%$ | $1 \%$ |
| Longliners > 110GRT | $23 \%$ | $28 \%$ |  |  |
| Pairtrawlers | $21 \%$ | $10.25 \%$ | $69 \%$ | $8.5 \%$ |
| Single trawlers > 400 HP | $4 \%$ | $1.75 \%$ | $13 \%$ | $90.5 \%$ |
| Others | $1 \%$ | $2 \%$ | $0.5 \%$ | $0.5 \%$ |

The technical measures as mentioned above are still in effect. An additional measure to reduce the fishing mortality on cod and haddock and to especially reduce the mortality on the youngest age groups was introduced (See the 2013 NWWG report, Figure 2.3) in July 2011, but was terminated in August 2013.

### 2.1.3 The marine environment and potential indicators

The waters around the Faroe Islands are in the upper 500 m dominated by the North Atlantic current, which to the north of the islands meets the East Icelandic current. Clockwise current systems create retention areas on the Faroe Plateau (Faroe shelf) and on the Faroe Bank. In deeper waters to the north and east and in the Faroe Bank channel there is deep Norwegian Seawater, and to the south and west is Atlantic water. From the late 1980s the intensity of the North Atlantic current passing the Faroe area decreased, but it has increased again in the most recent years. The productivity of the Faroese waters was very low in the late 1980s and early 1990s. This applies also to the recruitment of many fish stocks, and the growth of the fish was poor as well. Since then, there have been several periods with high or low productivity, which has been reflected in the fish landings a couple of years afterwards.

There has been observed a clear relationship, from primary production to the higher trophic levels (including fish and seabirds), in the Faroe shelf ecosystem, and all trophic levels seem to respond quickly to variability of primary production in the ecosystem (Gaard, E. et al. 2002). There is a positive relationship between primary production and the cod and haddock individual fish growth and recruitment $1 / 2-2$ years later. The primary production index has been below average since 2002 except for 2004 and 20082010 when it was above average (Figure 2.3). The estimate of primary production in 2016 will not be available until July. The primary production index could therefore be a candidate ecosystem and stock indicator. Another potential indicator candidate is the
so-called Subpolar Gyre Index, which is an index for the primary production in the outer areas (Figure 2.3).

Recent work (Steingrund et al., 2012) shows that there is a moderate positive correlation between primary production on the Faroe Shelf and the subsequent production of cod (Steingrund and Gaard, 2005). There is also a moderate positive correlation for haddock and saithe. If all three species are combined, the positive correlation becomes stronger (Figure 2.4). However, the last period of high productivity (2008-2010) did not lead to any marked increase in the stock size of cod/haddock, but only in saithe. The catchability of cod with longlines also increased by a factor of 2-3 in the same period.

### 2.1.4 Summary of the 2016 assessment of Faroe Plateau cod, haddock and saithe

A summary of selected parameters from the 2016 assessment of Faroe Plateau cod, Faroe haddock and Faroe saithe is shown in Figure 2.6. As mentioned in previous reports of this WG, landings of cod, haddock and saithe on the Faroes appear to be closely linked with the total biomass of the stocks.

For cod, the exploitation ratio and fishing mortality have remained relatively stable over time, although they have been more fluctuating in recent years (Figure 2.6). For haddock, the exploitation rate was high in the 1930s and decreasing from the 1950s and 1960s, while it has been fluctuating since the mid-1970s. For saithe, the exploitation rate was low in the 1930s and 1950s and increased until the 1970s, it decreased from the early 1990s-1998 and has increased close to the highest values observed in 2009. It has since declined again.

Another main feature of the plots of landings, biomasses, mortalities and recruitment is the apparent periodicity during the time-series with cod and haddock showing almost the same fluctuations and time-trends. Moreover, while the sum of cod, haddock and saithe biomasses has been rather constant over time (varied between 300-500 thousand tonnes most years), the proportion of saithe has increased during the period from 1924 up to today whereas the proportion of cod has decreased (Figure 2.6).

### 2.1.5 Reference points for Faroese stocks

As explained elsewhere in this report, MSY reference points were estimated for cod and haddock in 2011 and for saithe in 2014 in addition to the already existing PA reference points. These reference points are all estimated based on single-species models. Multispecies models may give very different perception of $\mathrm{F}_{\mathrm{MSY}}$ reference points than single-species models, and for the Faroe area this could be extra true, since there is a close relationship between the environment and the fish stocks and between fish stocks (see section 2.1.3). For example, adding the recruitment of cod and haddock and relating them to zooplankton concentration shows a strong negative correlation (Figure 2.5), but a potential causal relationship is unknown.

Faroe saithe stock dynamics is puzzling. If the biomass estimates prior to 1961 are approximately correct then there has been an increase in biomass from 1925 up to now as well as in catch and exploitation rate. There might be an interaction with cod, since the cod biomass has decreased over the same period. It might be speculated that trawling activity in the deep areas ( $>150 \mathrm{~m}$ ) from the 1950s has had a negative effect on cod and a positive effect on saithe. Hence, it might not be possible to maximize cod and saithe catches at the same time.

### 2.1.6 Management plan

In 2011 the Faroese minister of fisheries established a group of experts to formulate a management plan for cod, haddock and saithe including a harvest control rule and a recovery plan. The group consisted of scientists from the Faroe Marine Research Institute and the Faroese University, of 1 representative from the industry (trawlers) and 1 from the Ministry of Fisheries. The results of this work was delivered to the Minister of Fisheries in spring 2012 but the outcome has not been approved by the authorities so far and not been implemented. Basically, the plan builds on the MSY framework developed by ICES.

### 2.1.7 Oher issues

In order to put the current assessment into a wider context, the biomass of Faroe saithe was estimated back to 1925 by scaling cpue values for English steam trawlers to the biomass obtained from the stock assessment, see Working Document 13. The cpue series was from 1924-1978 and the stock assessment from 1961-2015. The overlapping years 1961-1971 were used as a basis to scale the saithe biomass back to 1924. Since the biomass estimates were rather noisy, a three-year moving average was taken as the final estimate of biomass back in time (Table 2.1.7.1). The table shows that the saithe biomass prior to 1960, when there was little fishery for saithe, was lower than during the fishery intensive period after 1970.

### 2.1.8 References:

Gaard. E., Hansen, B., Olsen, B and Reinert, J. 2001. Ecological features and recent trends in physical environment, plankton, fish stocks and seabirds in the Faroe plateau ecosystem. In: KSherman and H-R Skjoldal (eds). Changing states of the Large Marine Ecosystems of the North Atlantic.

Steingrund, P., and Gaard, E. 2005. Relationship between phytoplankton production and cod production on the Faroe Shelf. ICES Journal of Marine Science, 62: 163-176.

Steingrund, P., and Hátún, H. 2008. Relationship between the North Atlantic Subpolar Gyre and fluctuations of the saithe stock in Faroese waters. NWWG 2008 Working Document 20.
Steingrund, P., Gaard, E., Reinert, J., Olsen, B., Homrum, E., and Eliassen, K. 2012. Trophic relationships on the Faroe Shelf ecosystem and potential ecosystem states. In: Homrum, E., 2012. The effects of climate and ocean currents on Faroe Saithe. PhD-thesis, 2012.

Table 2.1. Number of allocated days since the fiscal year 1996/97.

| Allocated number of days: |  |  |  |  |  |  |  |  |  |  |  |  | Available |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Bólkur | $\begin{array}{\|l} \hline \text { Smb. LI.: } \\ (5020 / 5-96) \\ \hline \end{array}$ | Serlig viठ̃m.(12/15 mdr!) | 1 ytri | 1 innaru | 2 ytri | 2 innari | 3 | 4 A | 4 B | 4 D | 4 T | 5 | (at ráda yvir) | Dagar tils. |
| 1996/97 |  |  |  |  |  | 8225 | 3040 | 4700 | 3080 | 1540 |  | 22000 | 1000 | 43585 |
| 1996/97 | $\begin{aligned} & (846 / 6-97) \\ & (1339 / 8-97) \end{aligned}$ | $\begin{gathered} \text { (12/15mdr!) } \\ 12 \mathrm{mdr}! \end{gathered}$ |  |  |  | 8225 | 3040 | 5600 | 3410 | 1650 |  | 27000 | 660 | 49585 |
| 1997/98 |  |  |  |  |  | 7199 | 2660 | 4696 | 4632 |  |  | 23625 | 577 | 43389 |
| 1998/99 |  |  |  |  |  | 6839 | 2527 | 4461 | 4400 |  |  | 22444 | 548 | 41219 |
| 1999/2000 |  |  |  |  |  | 6839 | 2527 | 4461 | 4400 |  |  | 22444 | 548 | 41219 |
| 2000/2001 | $\left\{\begin{array}{l} \text { (104 17/8-00) } \\ (11515 / 8-01) \\ (7613 / 8-02) \end{array}\right.$ |  |  |  |  | 6839 | 2527 | 4461 | 4400 |  |  | 22,444 | 548 | 41219 |
| 2001/2002 |  |  |  |  |  | 6839 | 2527 | 4461 | 4400 |  |  | 22444 | 0 | 40671 |
| 2002/2003 |  |  |  |  |  | 6771 | 2502 | 4416 | 4356 |  |  | 22220 | 0 | 40265 |
| 2003/2004 | $\left\{\begin{array}{l} (1008 / 8-03) \\ (49 ~ 18 / 8-04) \end{array}\right.$ |  |  |  |  | 6636 | 2452 | 4328 | 4269 |  |  | 21776 | 0 | 39461 |
| 2004/2005 |  |  |  |  |  | 6536 | 2415 | 4263 | 4205 |  |  | 21449 | 0 | 38868 |
| 2005/2006 | $\left(\begin{array}{l} (98 ~ 19 / 8-05) \\ (81 \\ 17 / 8-06) \end{array}\right.$ |  |  |  |  | 5752 | 3578 | 1770 | 2067 |  | 1766 | 21235 | 0 | 36168 |
| 2006/2007 |  |  |  |  |  | 5752 | 3471 | 1717 | 2005 |  | 1713 | 20598 | 0 | 35256 |
| 2007/2008 | (8020/8-07) |  |  |  |  | 5637 | 3402 | 1683 | 1965 |  | 1679 | 20186 | 0 | 34552 |
| 2008/2009 | (76 15/8-08) |  |  |  |  | 5073 | 3062 | 1515 | 1769 |  | 1511 | 18167 | 0 | 31097 |
| 2008/2009 | (62 25/5-09) |  |  |  |  | 4638 | 3095 | 1393 | 1848 |  | 1621 | 18167 | 0 | 30762 |
| 2009/2010 | (106 17/8-09 |  |  |  |  | 4406 | 2940 | 1323 | 1756 |  | 1540 | 17259 | 0 | 29224 |
| 2010/2011 | (87 18/8-10) |  | 1700 | 900 |  | 4274 | 2852 | 1323 | 1756 |  | 1540 | 13259 | 0 | 25004 |
| 2010/2011 | sama - |  | 1700 | 900 |  | 4274 | 2852 | 1323 | 1756 |  | 1540 | 13259 | 0 | 27604 |
| 2011/12 | $\begin{array}{\|l\|} \hline(105 ~ 18 / 8-11) \\ (112 \\ 2 / 9-11) \end{array}$ |  |  |  | 1530 | 4657 | 2567 | 1058 | 1405 |  | 1386 | 10607 |  | 23210 |
| 2012/13 | (89 17/8-12) |  |  |  | 1530 | 4626 | 2567 | 1011 | 1533 |  | 1386 | 10607 |  | 23260 |
| 2013/14 | (109 16/8-13) |  |  |  | 1530 | 4441 | 2387 | 1011 | 1533 |  | 1386 | 9865 |  | 22153 |
| 2014/15 | (L89-18/8-14) |  |  |  | 1530 | 4455 | 2387 | 1029 | 1530 |  | 1386 | 9865 |  | 22182 |
| 2015/16 | $(\text { L108-5/8-15) }$ |  |  |  | 1530 | 4455 | 2387 | 1029 | 1530 |  | 1386 | 9865 |  | 22182 |

Table 2.2. Number of days allocated and the number actually used since the fiscal year 2014/2015

|  |  |  |  | pr. 10. mars. | 2016 (61/3 m |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Fleet segment | Allocated days <br> 2014/15 | Used <br> days <br> pr. Dato | \% used days | $\begin{aligned} & \text { Allocated } \\ & \text { days } \\ & 2015 / 16 \end{aligned}$ | Used days pr. Dato | \% used days |
| Reference: | (L89-18/8-14) |  |  | (L108-5/8-15) |  |  |
| Group 1 - innaru leióir |  |  |  |  |  |  |
| Group 1 - ytri leiõir |  |  |  |  |  |  |
| Group 2 - (innaru leiôi | 4455 | 4,307.87 | 97\% | 4455 | 2000.70 | 45\% |
| Group 2 - ytri leiôir | 1530 | 1,125.41 | 74\% | 1530 | 524.34 | 34\% |
| Group 3 | 2387 | 1234.57 | 52\% | 2387 | 939.92 | 39\% |
| Group 4A | 1029 | 253.59 | 25\% | 1029 | 167.07 | 16\% |
| Group 4B | 1530 | 565.34 | 37\% | 1530 | 424.94 | 28\% |
| Group 4T | 1386 | 716.83 | 52\% | 1386 | 371.1 | 27\% |
| Group 5A | 2640 | 1297 | 49\% | 2310 | 486 | 21\% |
| Group 5B | 7225 | 3709 | 51\% | 7555 | 1697 | 22\% |
| Total | 22182 | 13,209.61 | 60\% | 22182 | 6611.07 | 30\% |


| Estimation of the whole year |  | Tillutaбsmb.Vørn(05/10-15) |
| :---: | :---: | :---: |
| Mett ársnýtsla <br> Faktor <br> Væntandi: |  |  |
|  | 1.895 |  |
|  |  |  |
| (L108-5/8-15) | Predicted | óbroytt |
|  |  | (10/3-16) |
|  |  |  |
| 3,791.00 | 82\% | 4,353.25 |
| 993.54 | 65\% | 1,522.83 |
| 1,780.99 | 69\% | 2,148.22 |
| 316.57 | 31\% | 595.76 |
| 805.19 | 53\% | 932.62 |
| 703.17 | 51\% | 1,180.84 |
| 920.89 | 19\% | 2310 |
| 3,215.54 | 55\% | 7555 |
| 12,526.90 | 54\% | 20,598.52 |

Table 2.3. Main regulatory measures by fleet in the Faroese fisheries in 5 b. The fleet capacity is fixed, based on among other things no. of licenses. Number of licenses within each group (by May 2006) are as follows: 1: 12; 2:29; 3:25; 4A: 25; 4B: 21; 4T: 19; 5A:140; 5B: 453; 6: 8. These licenses have been fixed in 1997, but in group 5B a large number of additional licenses can be issued upon request.

|  | Fleet segment | Subgroups |  | Main regulation tools |
| :---: | :---: | :---: | :---: | :---: |
| 1 | Single trawlers > $400 \mathrm{HP}$ | $\begin{aligned} & \text { non } \\ & \mathrm{e} \end{aligned}$ |  | Fishing days, have from 2011/12 been merged with the pairtrawlers, area closures |
| 2 | $\begin{aligned} & \text { Pairtrawlers > } 400 \\ & \text { HP } \end{aligned}$ | $\begin{aligned} & \text { non } \\ & \mathrm{e} \end{aligned}$ |  | Fishing days, area closures |
| 3 | $\text { Longliners > } 110$ <br> GRT | $\begin{aligned} & \text { non } \\ & \mathrm{e} \end{aligned}$ |  | Fishing days, area closures |
| 4 | Coastal vessels>15 GRT | 4A | Trawlers 15-40 GRT | Fishing days |
|  |  | 4A | Longliners 15-40 GRT | Fishing days |
|  |  | 4B | Longliners>40 GRT | Fishing days |
|  |  | 4 T | Trawlers>40 GRT | Fishing days |
| 5 | Coastal vessels $<15$ GRT | 5A | Full-time fishers | Fishing days |
|  |  | 5B | Part-time fishers | Fishing days |
| 6 | Others |  | Gillnetters | Bycatch limitations, fishing depth, no. of nets |
|  |  |  | Others | Bycatch limitations |



Figure 2.1. The 2015 distribution of fishing activities by some major fleets. From top: Gillnet, longline $>1010 \mathrm{HP}$, trap and trawl. The longline fleet below 110 GRT is not shown here since they are not obliged to keep logbooks.

Exclusion zones for trawling

| Area | Period |
| :---: | :---: |
| a | 1 jan -31 des |
| aa | 1 jun -31 aug |
| b | 20 jan -1 mar |
| c | 1 jan -31 des |
| d | 1 jan -31 des |
| e | 1 apr -31 jan |
| f | 1 jan -31 des |
| g | 1 jan -31 des |
| h | 1 jan -31 des |
| i | 1 jan -31 des |
| j | 1 jan -31 des |
| k | 1 jan -31 des |
| l | 1 jan -31 des |
| m | 1 feb -1 jun |
| n | 31 jan -1 apr |
| o | 1 jan -31 des |
| p | 1 jan -31 des |
| r | 1 jan -31 des |
| s | 1 jan -31 des |
| C 1 | 1 jan -31 des |
| C 2 | 1 jan -31 des |
| C 3 | 1 jan -31 des |

Spawning closures

| Area | Period |
| :---: | :---: |
| 1 | 15 feb -31 mar |
| 2 | 15 feb -15 apr |
| 3 | 15 feb -15 apr |
| 4 | 1 feb -1 apr |
| 5 | 15 jan -15 mai |
| 6 | 15 feb -15 apr |
| 7 | 15 feb -15 apr |
| 8 | 1 mar -1 may |

Figure 2.2. Fishing area regulations in Division 5b. Allocation of fishing days applies to the area inside the outer thick line on the Faroe Plateau. Holders of effort quotas who fish outside this line can triple their numbers of days. Longliners larger than 110 GRT are not allowed to fish inside the inner thick line on the Faroe Plateau. If longliners change from longline to jigging, they can double their number of days. The Faroe Bank shallower than 200 m depths ( $\mathrm{a}, \mathrm{aa}$ ) is regulated separate from the Faroe Plateau. It is closed to trawling and the longline fishery is regulated by individual day quotas.



Figure 2.3. Temporal development of the phytoplankton index over the Faroe Shelf area ( $<\mathbf{1 3 0} \mathbf{m}$ ) and the Subpolar Gyre index which indicates productivity in deeper waters.


Figure 2.4. Relationship between primary production and production of cod, haddock and saithe.


Figure 2.5. Relationship between zooplankton concentration and recruitment of cod and haddock on the Faroe Plateau.


Figure 2.6. Summary of the stock dynamics for Faroe Plateau cod, Faroe haddock and Faroe saithe.

Table 2.1.7.1. Saithe biomass (age 3+) 1925-2015 in tons. Year label is sum of first row and first column.

|  | 1925 | 1950 | 1975 | 2000 |
| :---: | :---: | :---: | :---: | :---: |
| 0 | 86621 | 144660 | 189794 | 227759 |
| 1 | 91614 | 133220 | 181587 | 292429 |
| 2 | 102955 | 154250 | 168856 | 332716 |
| 3 | 121390 | 151612 | 150481 | 330728 |
| 4 | 137929 | 158206 | 127858 | 323589 |
| 5 | 127712 | 157146 | 134902 | 338048 |
| 6 | 115346 | 146198 | 153827 | 269512 |
| 7 | 111440 | 142441 | 165608 | 218366 |
| 8 | 118018 | 127763 | 187681 | 189274 |
| 9 | 123435 | 120344 | 198291 | 153457 |
| 10 | 121033 | 111550 | 192715 | 134874 |
| 11 | 116390 | 105008 | 238071 | 126661 |
| 12 | 119400 | 111502 | 254322 | 115439 |
| 13 | 124442 | 129760 | 261993 | 115660 |
| 14 | 139453 | 139221 | 231424 | 158781 |
| 15 | 150543 | 150302 | 193901 | 194118 |
| 16 | 161634 | 162609 | 151523 |  |
| 17 | 172724 | 161578 | 125365 |  |
| 18 | 183815 | 170304 | 134696 |  |
| 19 | 194905 | 197298 | 128717 |  |
| 20 | 205996 | 212238 | 154403 |  |
| 21 | 228522 | 218372 | 163848 |  |
| 22 | 207472 | 234819 | 183162 |  |
| 23 | 193811 | 210057 | 166861 |  |
| 24 | $141145$ | 205557 | 214410 |  |

### 3.1 State of the stock

Total nominal catches of the Faroe Bank cod from 1987 to 2015 as officially reported to ICES are given in Table 3.1 and since 1965 in Figure 3.1. UK catches reported to be taken on the Faroe Bank are all assumed to be taken on the Faroe Plateau and are therefore not used in the assessment. Landings have been highly variable from 1965 to the mid-1980s, reflecting the opportunistic nature of the cod fishery on the Bank, with peak landings slightly exceeding 5000 t in 1973 and 2003. The trend of landings has been smoother since 1987, declining from about 3500t in 1987 to only 330 t in 1992 before increasing to 3600 t in 1997. In 2015 landings were estimated at 17 t which is the lowest ever recorded since 1965 (Figure 3.1). Longline fishing effort increased substantially in 2003 and although it decreased in 2004 and 2005 the latter remains the second highest fishing effort observed since 1988 (Figure 3.1). From 2005-2007 the effort has been reduced substantially. In the 2010/2011 and 2011/2012 fishing years a total of 61 and 100 fishing-days were allocated to the Bank. No days have been allocated since 2012.
The Faroese groundfish surveys (spring and summer) cover the Faroe Bank and cod is mainly taken within the 200 m depth contour. The catches of cod per trawl hour in depths shallower than 200 meter are shown in Figure 3.2.
Spring survey was initiated in 1983 and discontinued in 1996, 2004 and 2005. Summer survey has been carried out since 1996. The cpue of spring survey was low during 1988-1995 varying between 73 and 95 kg per tow. Although noisy, the survey suggests higher, possibly increasing biomass during 1995-2003. Spring index suggests that the stock increased in 2013 and 2014 but it decreased rapidly in 2015 and 2016 well below the average of that of the period 1996-2002. The 2015 summer index is estimated at 25 kg per tow and the 2016 spring survey at 19 kg per tow, which are among the lowest values in both series. There are conflicting signals between both indices from 2012 to 2014. The agreement between summer and spring index is good during 1996 to 2001 and since 2006, but they diverged in the 2002-2003 and 2012-2014 periods. Both indices have remained well below average since 2004.

The figure of length distributions (figures 3.3 and 3.5) show in general good recruitment of 1 year old in summer survey from 2000-2002 (lengths $26-45 \mathrm{~cm}$ ), corresponding to good recruitment of 2 years old in spring surveys from 2001 to $2003(40-60 \mathrm{~cm})$. Spring index shows poor recruitment from 2006-2016 reflecting the weak year classes observed in summer survey since 2004. Age-disaggregated indices confirm the pattern observed in the length composition (figure 3.4 and figure 3.6)
A way to estimate recruitment strength is by simply counting the number of fish in length groups in the surveys. In spring index, recruitment was estimated as total number of fish below 60 cm (2-year old) and in summer index as number of fish below 45 cm (1-year old). According to summer index the recruitment of 1 year old was good from 2000 to 2003, while the recruitment has been relatively poor since 2004 (Figure 3.7) Spring recruitment index in 2015 shows no sign of incoming year classes. Correlation between spring and summer survey recruitment indices is fairly good ( $\mathrm{r}=0.86$ ). Correlation between numbers of 1 -year and 2 -years old cod in the age-disaggregated summer and spring surveys respectively is estimated at $\mathrm{r}=0.79$.

The group tried the ASPIC (Prager 1992) stock production model for the stock. The model requires catch data and corresponding effort or cpue data that are reasonable indices of the stock biomass.

ASPIC requires starting guesses for $r$, the intrinsic rate of increase, MSY, B1/BMSY ratio and $q$, catchability coefficients. No sensitivity analysis was performed to explore the stability of parameter estimation.

The program was run with the time-series from 1983-2015 including spring survey and 1996-2015 summer cpue's separately. The result of the runs are presented in tables 3.2 and 3.3 For both runs the model seemed to follow reasonably well survey trends in periods of low stock abundances but it failed to pick up the large increases observed in the 1996-2003 period (figures 3.8 and 3.9).

However estimates of $r=0.34$ and $\mathrm{Fms}_{\text {M }}=0.17$ (using autumn survey series) seem spurious given that the Faroe Bank cod is the fastest growing cod stock in the Atlantic.

The ratio of landings to the survey indices provides an exploitation ratio, which can be used as a proxy to relative changes in fishing mortality. For summer survey, the results suggest that fishing mortality has been reasonably stable during 1996 to 2002, but that it increased steeply in 2003, consistent with the $160 \%$ increase in longline fishing days in that year (Figure 3.1). The exploitation ratio has decreased since 2006 but increased in 2011 due to the increase in catches and decreased again afterwards reflecting autumn of catches observed since 2011.

### 3.2 Comparison with previous assessment and forecast

The status of the stock remains almost unchanged with respect to last year's assessment. Both spring and summer indices suggest the stock is well below average while there are no indications of incoming recruitment. Spring index suggests an increasing stock biomass from 2012-2014 which it is however not picked up by summer survey. The exploratory production model performed since 2013 confirms the poor status of the stock.

### 3.3 Management plans and evaluations

None

### 3.4 Management considerations

The landing estimates are uncertain because since 1996 vessels are allowed to fish both on the Plateau and on Faroe Bank during the same trip, rendering landings from both areas uncertain. Given the relative size of the two fisheries, this is a bigger problem for Faroe Bank cod than for Faroe Plateau cod, but the magnitude remains unquantified for both. The ability to provide advice depends on the reliability of input data. If the cod landings from Faroe Bank are not known, it is difficult to provide advice. If the fishery management agency intends to manage the two fisheries to protect the productive capacity of each individual unit, then it is necessary to identify the catch removed from each stock. Simple measures should make it possible to identify if the catch is originating in the Bank or from the Plateau e.g. by storing in different section of the hold and/or by tagging of the different boxes.

Consistent with the advice given in 2015 the WG suggests the closure of the fishery until the recovery of the stock is confirmed. The reopening of the fishery should not be considered until both surveys indicate a biomass at or above the average that of the period 1996-2002.

### 3.5 Regulations and their effects

In 1990, the decreasing trends in cod landings from Faroe Bank lead ACFM to advise the Faroese authorities to close the bank to all fishing. This advice was followed for depths shallower than 200 meters. In 1992 and 1993 longliners and jiggers were allowed to participate in an experimental fishery inside the 200 meters depth contour. For the quota year 1 September 1995 to 31 August 1996 a fixed quota of 1050 t was set. The new management regime with fishing days was introduced on 1 June 1996 allowing longliners and jiggers to fish inside the 200 m contour. The trawlers are allowed to fish outside the 200 m contour.

A total fishing ban during the spawning period (1 March-1 May) has been enforced since 2005. In 2009, fishing was restricted to all fishing gears from 1 January-31 August. However, in the 2010/2011 and 2011/2012 fishing years a total of 61 and 100 fishingdays were allocated to the Bank to jiggers in the shallow waters of the Bank. No days have been allocated since 2012.

Table 3.1. Faroe Bank (subdivision Vb2) cod. Nominal catches (tonnes) by countries 1986-2015 as officially reported to ICES. From 1992 the catches by Faroe Islands and Norway are used in the assessment.

|  | 1986 | 1987 | 1988 | 1989 | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Faroe Islands | 1836 | 3409 | 2966 | 1270 | 289 | 297 | 122 | 264 | 717 | 561 | 2051 | 3459 | 3092 | 1001 |  |  |
| Norway | 6 | 23 | 94 | 128 | 72 | 38 | 32 | 2 | 8 | 40 | 55 | 135 | 147 | 88 |  |  |
| UK (EW/N) | - | - | - | - | $2^{\text {F/ }}$ | $1{ }^{2}$ | $74{ }^{5}$ | $186^{\text {² }}$ | $56^{\text {² }}$ | $43^{5}$ | $126^{5}$ | $61^{5}$ | $27^{5}$ | - |  |  |
| UK (Scotland) | $63{ }^{\text {5 }}$ | $47^{5}$ | $37^{\text {5 }}$ | $14^{5}$ | $205^{5}$ | $90^{5}$ | $176{ }^{5}$ | $118{ }^{\text {/ }}$ | $227{ }^{\text {/ }}$ | $551{ }^{5}$ | $382^{\frac{5}{3}}$ | $277{ }^{5}$ | $265{ }^{5}$ | $51^{\text {/ }}$ |  |  |
| Total | 1905 | 3479 | 3097 | 1412 | 568 | 426 | 404 | 570 | 1008 | 1195 | 2614 | 3932 | 3531 | $210^{5}$ |  |  |
| Used in assessment |  |  |  |  | 289 | 297 | 154 | 266 | 725 | 601 | 2106 | 3594 | 3239 | 1350 |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 1089 |  |  |
|  | 2000 | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 |
| Faroe Islands |  | 1094 | 1840 | 5957 | 3607 | 1270 | 1005 | 471 | 231 | 81 | 111 | 393 | 115 | 40 | 40 | 18 |
| Norw ay | 49 | 51 | 25 | 72 | 18 | 37 | 10 | 7 | 1 | 4 | 1 |  | 0 |  |  | 0 |
| Greenland | - | - | - | - | - | - | - | - | - | - | 5 |  | 1 |  |  |  |
| UK (EW/NI) | $18^{\text {5 }}$ | $50^{\text {² }}$ | $42^{5}$ | $15^{5}$ | $15^{\text {³ }}$ | $24^{\frac{5}{3}}$ | $1^{5}$ |  |  |  |  |  |  |  |  |  |
| UK (Scotland) | $245{ }^{\text {5 }}$ | $288{ }^{\frac{5}{3}}$ | $218{ }^{5}$ | $254{ }^{5}$ | $244{ }^{\frac{5}{3}}$ | $1129{ }^{\text {3 }}$ | $278{ }^{5}$ | 53 | 32 | 38 | 54 |  |  |  | 45 |  |
| Total | 312 | 1483 | 2125 | 6298 | 3884 | 2460 | 1294 | 531 | 264 | 123 | 171 | 393 | 116 | 40 | 85 |  |
| Correction of Faroese catches in Vb2 |  | -65 | -109 | -353 | -214 | -75 | -60 | -28 | -14 | -5 | -7 | -23 | -7 | -2 | -2 | -1 |
| Used in assessment | 1194 | 1080 | 1756 | 5676 | 3411 | 1232 | 955 | 450 | 218 | 80 | 105 | 370 | 108 | 38 | 38 | 17 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Preliminary |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| ${ }^{2}$ Included in Vb1. |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| ${ }^{3}$ Reported as Vb. |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

Table 3.2. Faroe Bank (subdivision Vb2) cod. Surplus production model output using summer index.
Faroe Bank Cod RV Page 1

28 Apr 2016 at 13:32.23
ASPIC -- A Surplus-Production Model Including Covariates (Ver. 3.82)

## FIT Mode

ASPIC User's Manual is available gratis 101 Pivers Island Road; Beaufort, North Carolina 28516 USA
from the author.
Ref: Prager, M. H. 1994. A suite of extensions to a nonequilibrium surplus-production model. Fishery Bulletin 92: 374-389.

CONTROL PARAMETERS USED (FROM INPUT FILE)

| ----------------------------------------------------------------------------------------------------- |  |  |  |
| :--- | :---: | :---: | :---: | :---: |
| Number of years analyzed: |  | Number of bootstrap trials: | 0 |
| Number of dataseries: | 1 | Lower bound on MSY: | $5.000 \mathrm{E}+02$ |
| Objective function computed: | in effort | Upper bound on MSY: | $1.000 \mathrm{E}+09$ |
| Relative conv. criterion (simplex): | $1.000 \mathrm{E}-08$ | Lower bound on r: | $7.000 \mathrm{E}-02$ |
| Relative conv. criterion (restart): | $3.000 \mathrm{E}-08$ | Upper bound on r: | $2.500 \mathrm{E}+00$ |
| Relative conv. criterion (effort): | $1.000 \mathrm{E}-04$ | Random number seed: | 2010417 |
| Maximum F allowed in fitting: | 8.000 | Monte Carlo search mode, trials: | 1000 |

PROGRAM STATUS INFORMATION (NON-BOOTSTRAPPED ANALYSIS)
code 0
Normal convergence.

GOODNESS-OF-FIT AND WEIGHTING FOR NON-BOOTSTRAPPED ANALYSIS

| Weighted <br> Loss component number and title | Weighted SSE N | Current <br> MSE | Suggested weight | R-squared weight in | cpue |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |
| Loss(-1) SSE in yield 0.0 | $0.000 \mathrm{E}+00$ |  |  |  |  |
| Loss( 0) Penalty for B1R > 2 | $0.000 \mathrm{E}+00 \quad 1$ | N/A | $1.000 \mathrm{E}-01$ | N/A |  |
| Loss( 1) Survey cpue Spring | $1.545 \mathrm{E}+0133$ | $4.983 \mathrm{E}-01$ | $11.000 \mathrm{E}+00$ | $1.000 \mathrm{E}+00$ | 0.443 |
| TOTAL OBJECTIVE FUNCTION: | 1.5448103 | E+01 |  |  |  |
| Number of restarts required for convergence | gence: 10 |  |  |  |  |
| Est. B-ratio coverage index (0 worst, 2 best) | best): 0.7964 | < The | ese two measur | ures are defined | Prager |
| Est. B-ratio nearness index ( 0 worst, 1 best): | best): 0.8438 | < et | et al. (1996), Tr | Trans. A.F.S. 12 | 729 |

## MODEL PARAMETER ESTIMATES (NON-BOOTSTRAPPED)



## MANAGEMENT PARAMETER ESTIMATES (NON-BOOTSTRAPPED)


........ Fishing effort at MSY in units of each fishery:
fmsy ( 1) Survey cpue Spring $\quad 8.004 \mathrm{E}+00 \quad \mathrm{r} / 2 \mathrm{q}(1) \quad \mathrm{f}(0.1)=7.203 \mathrm{E}+00$

Page 2

ESTIMATED POPULATION TRAJECTORY (NON-BOOTSTRAPPED)


Faroe Bank Cod RV
Page 3

RESULTS FOR DATASERIES \# 1 (NON-BOOTSTRAPPED)
Survey cpue Spring


[^0]Faroe Bank Cod RV
Page 4
UNWEIGHTED LOG RESIDUAL PLOT FOR DATASERIES \# 1


Observed (O) and Estimated (*) cpue for Dataseries \# 1 -- Survey cpue Spring


Table 3.3. Faroe Bank (subdivision Vb2) cod. Surplus production model output using spring index.

Faroe Bank Cod RV | Page 1 |
| :--- |
| 28 Apr 2016 at 13:24.32 |

ASPIC -- A Surplus-Production Model Including Covariates (Ver. 3.82)
FIT Mode

Author: Michael H. Prager; NOAA/NMFS/S.E. Fisheries Science Center
101 Pivers Island Road; Beaufort, North Carolina 28516 USA
ASPIC User's Manual is available gratis
from the author.
Ref: Prager, M. H. 1994. A suite of extensions to a nonequilibrium surplus-production model. Fishery Bulletin 92: 374-389.

CONTROL PARAMETERS USED (FROM INPUT FILE)

| Number of years analyzed: | 51 | Number of bootstrap trials: | 0 |
| :---: | :---: | :---: | :---: |
| Number of dataseries: | 1 | Lower bound on MSY: | $5.000 \mathrm{E}+02$ |
| Objective function computed: | in effort | Upper bound on MSY: | $1.000 \mathrm{E}+09$ |
| Relative conv. criterion (simplex): | $1.000 \mathrm{E}-08$ | Lower bound on r : | $7.000 \mathrm{E}-02$ |
| Relative conv. criterion (restart): | $3.000 \mathrm{E}-08$ | Upper bound on r : | $2.500 \mathrm{E}+00$ |
| Relative conv. criterion (effort): | $1.000 \mathrm{E}-04$ | Random number seed: | 2010417 |
| Maximum F allowed in fitting: | 8.000 | Monte Carlo search mode, trials: | 110000 |

PROGRAM STATUS INFORMATION (NON-BOOTSTRAPPED ANALYSIS)

Normal convergence.

GOODNESS-OF-FIT AND WEIGHTING FOR NON-BOOTSTRAPPED ANALYSIS

| Weighted | Weighted | Current | Suggested | R -squared |
| :---: | :---: | :---: | :---: | :---: |
| Loss component number and title | SSE N | MSE | weight | weight |

Loss(-1) SSE in yield
Loss( 0) Penalty for B1R > 2
Loss( 1) Survey cpue Spring
TOTAL OBJECTIVE FUNCTION:
$0.000 \mathrm{E}+00$
$0.000 \mathrm{E}+00 \quad 1 \quad$ N/A $\quad 1.000 \mathrm{E}-01 \quad$ N/A
$2.279 \mathrm{E}+01 \quad 30 \quad 8.140 \mathrm{E}-01 \quad 1.000 \mathrm{E}+00 \quad 1.000 \mathrm{E}+00 \quad 0.102$ $2.27906013 \mathrm{E}+01$

Number of restarts required for convergence: 33
Est. B-ratio coverage index ( 0 worst, 2 best): 0.3202
< These two measures are defined in Prager
Est. B-ratio nearness index (0 worst, 1 best): $0.3595<$ et al. (1996), Trans. A.F.S. 125:729


MANAGEMENT PARAMETER ESTIMATES (NON-BOOTSTRAPPED)

........ Fishing effort at MSY in units of each fishery:
fmsy (1) Survey cpue Spring $\quad 5.973 \mathrm{E}+00 \quad \mathrm{r} / 2 \mathrm{q}(1) \quad \mathrm{f}(0.1)=5.376 \mathrm{E}+00$

Page 2

## ESTIMATED POPULATION TRAJECTORY (NON-BOOTSTRAPPED)



| 1965 | 0.273 | $8.530 \mathrm{E}+03$ | $8.574 \mathrm{E}+03$ | $2.341 \mathrm{E}+03$ | $2.341 \mathrm{E}+03$ | $2.428 \mathrm{E}+03$ | $1.641 \mathrm{E}+00$ | $2.964 \mathrm{E}-01$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |


| 1966 | 0.214 | $8.618 \mathrm{E}+03$ | $8.916 \mathrm{E}+03$ | $1.909 \mathrm{E}+03$ | $1.909 \mathrm{E}+03$ | $2.507 \mathrm{E}+03$ | $1.287 \mathrm{E}+00$ | $2.994 \mathrm{E}-01$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |


| 1967 | 0.160 | $9.216 \mathrm{E}+03$ | $9.776 \mathrm{E}+03$ | $1.569 \mathrm{E}+03$ | $1.569 \mathrm{E}+03$ | $2.700 \mathrm{E}+03$ | $9.646 \mathrm{E}-01$ | $3.202 \mathrm{E}-01$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |


| 1968 | 0.397 | $1.035 \mathrm{E}+04$ | $9.741 \mathrm{E}+03$ | $3.871 \mathrm{E}+03$ | $3.871 \mathrm{E}+03$ | $2.692 \mathrm{E}+03$ | $2.388 \mathrm{E}+00$ | $3.595 \mathrm{E}-01$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |


| 5 | 1969 | 0.266 | $9.169 \mathrm{E}+03$ | $9.230 \mathrm{E}+03$ | $2.457 \mathrm{E}+03$ | $2.457 \mathrm{E}+03$ | $2.579 \mathrm{E}+03$ | $1.600 \mathrm{E}+00$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |$\quad 3.186 \mathrm{E}-01$


| 1970 | 0.332 | $9.291 \mathrm{E}+03$ | $9.055 \mathrm{E}+03$ | $3.002 \mathrm{E}+03$ | $3.002 \mathrm{E}+03$ | $2.539 \mathrm{E}+03$ | $1.992 \mathrm{E}+00$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |$\quad 3.228 \mathrm{E}-01$


| 1971 | 0.230 | $8.828 \mathrm{E}+03$ | $9.058 \mathrm{E}+03$ | $2.079 \mathrm{E}+03$ | $2.079 \mathrm{E}+03$ | $2.540 \mathrm{E}+03$ | $1.379 \mathrm{E}+00$ | $3.067 \mathrm{E}-01$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |


| 1972 | 0.228 | $9.289 \mathrm{E}+03$ | $9.528 \mathrm{E}+03$ | $2.168 \mathrm{E}+03$ | $2.168 \mathrm{E}+03$ | $2.646 \mathrm{E}+03$ | $1.368 \mathrm{E}+00$ | $3.227 \mathrm{E}-01$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |


| 9 | 1973 | 0.614 | $9.767 \mathrm{E}+03$ | $8.312 \mathrm{E}+03$ | $5.101 \mathrm{E}+03$ | $5.101 \mathrm{E}+03$ | $2.363 \mathrm{E}+03$ | $3.688 \mathrm{E}+00$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $3.393 \mathrm{E}-01$ |  |  |  |  |  |  |  |  |


| 10 | 1974 | 0.295 | $7.029 \mathrm{E}+03$ | $7.020 \mathrm{E}+03$ | $2.068 \mathrm{E}+03$ | $2.068 \mathrm{E}+03$ | $2.051 \mathrm{E}+03$ | $1.770 \mathrm{E}+00$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |$\quad 2.442 \mathrm{E}-01$


| 11 | 1975 | 0.290 | $7.012 \mathrm{E}+03$ | $7.019 \mathrm{E}+03$ | $2.036 \mathrm{E}+03$ | $2.036 \mathrm{E}+03$ | $2.051 \mathrm{E}+03$ | $1.743 \mathrm{E}+00$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | $2.436 \mathrm{E}-01$


| 12 | 1976 | 0.327 | $7.027 \mathrm{E}+03$ | $6.908 \mathrm{E}+03$ | $2.258 \mathrm{E}+03$ | $2.258 \mathrm{E}+03$ | $2.023 \mathrm{E}+03$ | $1.964 \mathrm{E}+00$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |$\quad 2.442 \mathrm{E}-01$


| 13 | 1977 | 0.130 | $6.792 \mathrm{E}+03$ | $7.370 \mathrm{E}+03$ | $9.590 \mathrm{E}+02$ | $9.590 \mathrm{E}+02$ | $2.138 \mathrm{E}+03$ | $7.821 \mathrm{E}-01$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |$\quad 2.360 \mathrm{E}-01$


| 4 | 1978 | 0.655 | $7.971 \mathrm{E}+03$ | $6.683 \mathrm{E}+03$ | $4.379 \mathrm{E}+03$ | $4.379 \mathrm{E}+03$ | $1.963 \mathrm{E}+03$ | $3.938 \mathrm{E}+00$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |$\quad 2.769 \mathrm{E}-01$


| 5 | 1979 | 0.227 | $5.555 E+03$ | $5.763 \mathrm{E}+03$ | $1.306 \mathrm{E}+03$ | $1.306 \mathrm{E}+03$ | $1.726 \mathrm{E}+03$ | $1.362 \mathrm{E}+00$ | $1.930 \mathrm{E}-01$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |


| 16 | 1980 | 0.191 | $5.975 \mathrm{E}+03$ | $6.303 \mathrm{E}+03$ | $1.203 \mathrm{E}+03$ | $1.203 \mathrm{E}+03$ | $1.868 \mathrm{E}+03$ | $1.147 \mathrm{E}+00$ | $2.076 \mathrm{E}-01$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |


| 17 | 1981 | 0.174 | $6.639 \mathrm{E}+03$ | $7.048 \mathrm{E}+03$ | $1.229 \mathrm{E}+03$ | $1.229 \mathrm{E}+03$ | $2.058 \mathrm{E}+03$ | $1.048 \mathrm{E}+00$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |$\quad 2.307 \mathrm{E}-01$


| 18 | 1982 | 0.293 | $7.468 \mathrm{E}+03$ | $7.456 \mathrm{E}+03$ | $2.184 \mathrm{E}+03$ | $2.184 \mathrm{E}+03$ | $2.160 \mathrm{E}+03$ | $1.760 \mathrm{E}+00$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |$\quad 2.595 \mathrm{E}-01$


| 19 | 1983 | 0.310 | $7.444 \mathrm{E}+03$ | $7.370 \mathrm{E}+03$ | $2.284 \mathrm{E}+03$ | $2.284 \mathrm{E}+03$ | $2.139 \mathrm{E}+03$ | $1.862 \mathrm{E}+00$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |$\quad 2.586 \mathrm{E}-01$



| 21 | 1985 | 0.432 | $7.221 \mathrm{E}+03$ | $6.740 \mathrm{E}+03$ | $2.913 \mathrm{E}+03$ | $2.913 \mathrm{E}+03$ | $1.980 \mathrm{E}+03$ | $2.597 \mathrm{E}+00$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | $2.509 \mathrm{E}-01$


| 22 | 1986 | 0.291 | $6.288 \mathrm{E}+03$ | $6.304 \mathrm{E}+03$ | $1.836 \mathrm{E}+03$ | $1.836 \mathrm{E}+03$ | $1.868 \mathrm{E}+03$ | $1.750 \mathrm{E}+00$ | $2.185 \mathrm{E}-01$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |


| 23 | 1987 | 0.635 | $6.320 \mathrm{E}+03$ | $5.370 \mathrm{E}+03$ | $3.409 \mathrm{E}+03$ | $3.409 \mathrm{E}+03$ | $1.619 \mathrm{E}+03$ | $3.815 \mathrm{E}+00$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |$\quad 2.196 \mathrm{E}-01$


| 24 | 1988 | 0.846 | $4.529 \mathrm{E}+03$ | $3.508 \mathrm{E}+03$ | $2.966 \mathrm{E}+03$ | $2.966 \mathrm{E}+03$ | $1.094 \mathrm{E}+03$ | $5.082 \mathrm{E}+00$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | $1.574 \mathrm{E}-01$


| 25 | 1989 | 0.530 | $2.658 \mathrm{E}+03$ | $2.395 \mathrm{E}+03$ | $1.270 \mathrm{E}+03$ | $1.270 \mathrm{E}+03$ | $7.638 \mathrm{E}+02$ | $3.186 \mathrm{E}+00$ | $9.235 \mathrm{E}-02$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |


| 26 | 1990 | 0.121 | $2.152 \mathrm{E}+03$ | $2.380 \mathrm{E}+03$ | $2.890 \mathrm{E}+02$ | $2.890 \mathrm{E}+02$ | $7.590 \mathrm{E}+02$ | $7.299 \mathrm{E}-01$ | $7.476 \mathrm{E}-02$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |


| 27 | 1991 | 0.102 | $2.622 \mathrm{E}+03$ | $2.925 \mathrm{E}+03$ | $2.970 \mathrm{E}+02$ | $2.970 \mathrm{E}+02$ | $9.237 \mathrm{E}+02$ | $6.103 \mathrm{E}-01$ | $9.110 \mathrm{E}-02$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

$28 \quad 1992 \quad 0.041 \quad 3.249 \mathrm{E}+03 \quad 3.731 \mathrm{E}+03 \quad 1.540 \mathrm{E}+02 \quad 1.540 \mathrm{E}+02 \quad 1.161 \mathrm{E}+03 \quad 2.481 \mathrm{E}-01 \quad 1.129 \mathrm{E}-01$
$29 \quad 1993 \quad 0.055 \quad 4.255 \mathrm{E}+03 \quad 4.837 \mathrm{E}+03 \quad 2.660 \mathrm{E}+02 \quad 2.660 \mathrm{E}+02 \quad 1.474 \mathrm{E}+03 \quad 3.305 \mathrm{E}-01 \quad 1.478 \mathrm{E}-01$

| 30 | 1994 | 0.121 | $5.463 \mathrm{E}+03$ | $5.979 \mathrm{E}+03$ | $7.250 \mathrm{E}+02$ | $7.250 \mathrm{E}+02$ | $1.782 \mathrm{E}+03$ | $7.288 \mathrm{E}-01$ | $1.898 \mathrm{E}-01$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |


| 31 | 1995 | 0.083 | $6.520 \mathrm{E}+03$ | $7.253 \mathrm{E}+03$ | $6.010 \mathrm{E}+02$ | $6.010 \mathrm{E}+02$ | $2.108 \mathrm{E}+03$ | $4.980 \mathrm{E}-01$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |$\quad 2.265 \mathrm{E}-01$


| 32 | 1996 | 0.259 | $8.028 \mathrm{E}+03$ | $8.138 \mathrm{E}+03$ | $2.106 \mathrm{E}+03$ | $2.106 \mathrm{E}+03$ | $2.325 \mathrm{E}+03$ | $1.555 \mathrm{E}+00$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |$\quad 2.789 \mathrm{E}-01$


| 33 | 1997 | 0.479 | $8.247 \mathrm{E}+03$ | $7.508 \mathrm{E}+03$ | $3.594 \mathrm{E}+03$ | $3.594 \mathrm{E}+03$ | $2.172 \mathrm{E}+03$ | $2.877 \mathrm{E}+00$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |$\quad 2.865 \mathrm{E}-01$


| 34 | 1998 | 0.533 | $6.825 \mathrm{E}+03$ | $6.077 \mathrm{E}+03$ | $3.239 \mathrm{E}+03$ | $3.239 \mathrm{E}+03$ | $1.808 \mathrm{E}+03$ | $3.203 \mathrm{E}+00$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |$\quad 2.371 \mathrm{E}-01$


| 35 | 1999 | 0.174 | $5.393 \mathrm{E}+03$ | $5.748 \mathrm{E}+03$ | $1.001 \mathrm{E}+03$ | $1.001 \mathrm{E}+03$ | $1.722 \mathrm{E}+03$ | $1.047 \mathrm{E}+00$ | $1.874 \mathrm{E}-01$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |


| 36 | 2000 | 0.185 | $6.114 \mathrm{E}+03$ | $6.468 \mathrm{E}+03$ | $1.194 \mathrm{E}+03$ | $1.194 \mathrm{E}+03$ | $1.910 \mathrm{E}+03$ | $1.110 \mathrm{E}+00$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |$\quad 2.124 \mathrm{E}-01$


| 37 | 2001 | 0.147 | $6.830 \mathrm{E}+03$ | $7.347 \mathrm{E}+03$ | $1.080 \mathrm{E}+03$ | $1.080 \mathrm{E}+03$ | $2.132 \mathrm{E}+03$ | $8.834 \mathrm{E}-01$ | $2.373 \mathrm{E}-01$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 38 | 2002 | 0.215 | $7.882 \mathrm{E}+03$ | $8.170 \mathrm{E}+03$ | $1.756 \mathrm{E}+03$ | $1.756 \mathrm{E}+03$ | $2.333 \mathrm{E}+03$ | $1.292 \mathrm{E}+00$ | $2.739 \mathrm{E}-01$ |
| 39 | 2003 | 0.892 | $8.459 \mathrm{E}+03$ | $6.360 \mathrm{E}+03$ | $5.676 \mathrm{E}+03$ | $5.676 \mathrm{E}+03$ | $1.876 \mathrm{E}+03$ | $5.364 \mathrm{E}+00$ | $2.939 \mathrm{E}-01$ |
| 40 | 2004 | 1.024 | $4.659 \mathrm{E}+03$ | $3.331 \mathrm{E}+03$ | $3.411 \mathrm{E}+03$ | $3.411 \mathrm{E}+03$ | $1.042 \mathrm{E}+03$ | $6.153 \mathrm{E}+00$ | $1.619 \mathrm{E}-01$ |
| 41 | 2005 | 0.624 | $2.290 \mathrm{E}+03$ | $1.975 \mathrm{E}+03$ | $1.232 \mathrm{E}+03$ | $1.232 \mathrm{E}+03$ | $6.347 \mathrm{E}+02$ | $3.748 \mathrm{E}+00$ | $7.956 \mathrm{E}-02$ |
| 42 | 2006 | 0.666 | $1.692 \mathrm{E}+03$ | $1.433 \mathrm{E}+03$ | $9.550 \mathrm{E}+02$ | $9.550 \mathrm{E}+02$ | $4.649 \mathrm{E}+02$ | $4.005 \mathrm{E}+00$ | $5.880 \mathrm{E}-02$ |
| 43 | 2007 | 0.386 | $1.202 \mathrm{E}+03$ | $1.167 \mathrm{E}+03$ | $4.500 \mathrm{E}+02$ | $4.500 \mathrm{E}+02$ | $3.805 \mathrm{E}+02$ | $2.317 \mathrm{E}+00$ | $4.177 \mathrm{E}-02$ |
| 44 | 2008 | 0.179 | $1.133 \mathrm{E}+03$ | $1.221 \mathrm{E}+03$ | $2.180 \mathrm{E}+02$ | $2.180 \mathrm{E}+02$ | $3.975 \mathrm{E}+02$ | $1.073 \mathrm{E}+00$ | $3.936 \mathrm{E}-02$ |
| 45 | 2009 | 0.053 | $1.312 \mathrm{E}+03$ | $1.508 \mathrm{E}+03$ | $8.000 \mathrm{E}+01$ | $8.000 \mathrm{E}+01$ | $4.885 \mathrm{E}+02$ | $3.189 \mathrm{E}-01$ | $4.560 \mathrm{E}-02$ |
| 46 | 2010 | 0.053 | $1.721 \mathrm{E}+03$ | $1.974 \mathrm{E}+03$ | $1.050 \mathrm{E}+02$ | $1.050 \mathrm{E}+02$ | $6.343 \mathrm{E}+02$ | $3.196 \mathrm{E}-01$ | $5.979 \mathrm{E}-02$ |
| 47 | 2011 | 0.151 | $2.250 \mathrm{E}+03$ | $2.450 \mathrm{E}+03$ | $3.700 \mathrm{E}+02$ | $3.700 \mathrm{E}+02$ | $7.806 \mathrm{E}+02$ | $9.075 \mathrm{E}-01$ | $7.818 \mathrm{E}-02$ |
| 48 | 2012 | 0.035 | $2.661 \mathrm{E}+03$ | $3.072 \mathrm{E}+03$ | $1.080 \mathrm{E}+02$ | $1.080 \mathrm{E}+02$ | $9.673 \mathrm{E}+02$ | $2.113 \mathrm{E}-01$ | $9.245 \mathrm{E}-02$ |
| 49 | 2013 | 0.009 | $3.520 \mathrm{E}+03$ | $4.107 \mathrm{E}+03$ | $3.800 \mathrm{E}+01$ | $3.800 \mathrm{E}+01$ | $1.269 \mathrm{E}+03$ | $5.561 \mathrm{E}-02$ | $1.223 \mathrm{E}-01$ |
| 50 | 2014 | 0.007 | $4.751 \mathrm{E}+03$ | $5.527 \mathrm{E}+03$ | $3.800 \mathrm{E}+01$ | $3.800 \mathrm{E}+01$ | $1.661 \mathrm{E}+03$ | $4.132 \mathrm{E}-02$ | $1.651 \mathrm{E}-01$ |
| 51 | 2015 | 0.002 | $6.374 \mathrm{E}+03$ | $7.393 \mathrm{E}+03$ | $1.700 \mathrm{E}+01$ | $1.700 \mathrm{E}+01$ | $2.142 \mathrm{E}+03$ | $1.382 \mathrm{E}-02$ | $2.215 \mathrm{E}-01$ |
| 52 | 2016 | $8.499 \mathrm{E}+03$ |  |  |  |  | $2.953 \mathrm{E}-01$ |  |  |

Data type CC: cpue-catch series Series weight: 1.000


| 37 | 2001 | $1.022 \mathrm{E}+03$ | $2.047 \mathrm{E}+02$ | 0.1470 | $1.080 \mathrm{E}+03$ | $1.080 \mathrm{E}+03$ | -1.60839 | $0.000 \mathrm{E}+00$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 38 | 2002 | $4.439 \mathrm{E}+02$ | $2.276 \mathrm{E}+02$ | 0.2149 | $1.756 \mathrm{E}+03$ | $1.756 \mathrm{E}+03$ | -0.66803 | $0.000 \mathrm{E}+00$ |
| 39 | 2003 | $8.671 \mathrm{E}+02$ | $1.772 \mathrm{E}+02$ | 0.8925 | $5.676 \mathrm{E}+03$ | $5.676 \mathrm{E}+03$ | -1.58807 | $0.000 \mathrm{E}+00$ |
| 40 | 2004 | $*$ | $9.281 \mathrm{E}+01$ | 1.0239 | $3.411 \mathrm{E}+03$ | $3.411 \mathrm{E}+03$ | 0.00000 | $0.000 \mathrm{E}+00$ |
| 41 | 2005 | $*$ | $5.503 \mathrm{E}+01$ | 0.6236 | $1.232 \mathrm{E}+03$ | $1.232 \mathrm{E}+03$ | 0.00000 | $0.000 \mathrm{E}+00$ |
| 42 | 2006 | $6.051 \mathrm{E}+01$ | $3.992 \mathrm{E}+01$ | 0.6664 | $9.550 \mathrm{E}+02$ | $9.550 \mathrm{E}+02$ | -0.41589 | $0.000 \mathrm{E}+00$ |
| 43 | 2007 | $5.206 \mathrm{E}+01$ | $3.251 \mathrm{E}+01$ | 0.3855 | $4.500 \mathrm{E}+02$ | $4.500 \mathrm{E}+02$ | -0.47070 | $0.000 \mathrm{E}+00$ |
| 44 | 2008 | $6.402 \mathrm{E}+01$ | $3.400 \mathrm{E}+01$ | 0.1786 | $2.180 \mathrm{E}+02$ | $2.180 \mathrm{E}+02$ | -0.63283 | $0.000 \mathrm{E}+00$ |
| 45 | 2009 | $5.550 \mathrm{E}+01$ | $4.200 \mathrm{E}+01$ | 0.0531 | $8.000 \mathrm{E}+01$ | $8.000 \mathrm{E}+01$ | -0.27870 | $0.000 \mathrm{E}+00$ |
| 46 | 2010 | $5.808 \mathrm{E}+01$ | $5.500 \mathrm{E}+01$ | 0.0532 | $1.050 \mathrm{E}+02$ | $1.050 \mathrm{E}+02$ | -0.05455 | $0.000 \mathrm{E}+00$ |
| 47 | 2011 | $1.224 \mathrm{E}+02$ | $6.826 \mathrm{E}+01$ | 0.1510 | $3.700 \mathrm{E}+02$ | $3.700 \mathrm{E}+02$ | -0.58401 | $0.000 \mathrm{E}+00$ |
| 48 | 2012 | $4.454 \mathrm{E}+01$ | $8.557 \mathrm{E}+01$ | 0.0352 | $1.080 \mathrm{E}+02$ | $1.080 \mathrm{E}+02$ | 0.65294 | $0.000 \mathrm{E}+00$ |
| 49 | 2013 | $1.390 \mathrm{E}+02$ | $1.144 \mathrm{E}+02$ | 0.0093 | $3.800 \mathrm{E}+01$ | $3.800 \mathrm{E}+01$ | -0.19452 | $0.000 \mathrm{E}+00$ |
| 50 | 2014 | $2.092 \mathrm{E}+02$ | $1.540 \mathrm{E}+02$ | 0.0069 | $3.800 \mathrm{E}+01$ | $3.800 \mathrm{E}+01$ | -0.30657 | $0.000 \mathrm{E}+00$ |
| 51 | 2015 | $3.719 \mathrm{E}+01$ | $2.060 \mathrm{E}+02$ | 0.0023 | $1.700 \mathrm{E}+01$ | $1.700 \mathrm{E}+01$ | 1.71162 | $0.000 \mathrm{E}+00$ |

* Asterisk indicates missing value(s).


## UNWEIGHTED LOG RESIDUAL PLOT FOR DATASERIES \# 1




```
Faroe Bank Cod RV
Observed (O) and Estimated (*) cpue for Dataseries \# 1 -- Survey cpue Spring
1200. -:
O
1000. -:
\(:\)
.
O
800. -:
600. -:
O O
:
\(\stackrel{:}{.}\)
```



```
400. -:
```



```
0. -:
```



```
1959. 1965. 1971. 1977. 1983. 1989. 1995. 2001. 2007. 2013. 2019.
                                    Time Plot of Estimated F-Ratio and B-Ratio
7.2 -:
    :
    :
    : F
6.0 -:
    :
    : F
    F
4.8-:
    :
    : F
            F F F
3.6-: F
    : F F
                            F
                                    F
2.4 -: F F
        F F FF
    F F FF F F
        FF F
1.2-: F F F F
    : -- --- --2 --- -- --- -- - 2- --- --- --- -- --- - 2- 2--- -- - 2- - 2- --- --- --
                                    FF F
                                    F
        B BB F 2B B BB B BB B BB B FF F B BB B
        0.0 -: B BB B BB B BB B BB F FF
    1959. 1965. 1971. 1977. 1983. 1989. 1995. 2001. 2007. 2013. 2019.
```



Figure 3.1. Faroe Bank (subdivision Vb2) cod. Reported landings 1965-2015. Since 1992 only catches from Faroese and Norwegian vessels are considered to be taken on Faroe Bank. Lower plot: fishing days (fishing year) 1997-2016 for longline gear type in the Faroe Bank.


Figure 3.2. Faroe Bank (subdivision Vb 2 ) cod. Catch per unit of effort in spring groundfish survey (1983-2016)(red line) and summer survey (1996-2015)(black line). Vertical bars and shaded areas show the standard error in the estimation of indices.


Figure 3.3. Faroe Bank (subdivision Vb2) cod. Length distributions in summer survey (1996-2015)


Figure 3.4. Faroe Bank (subdivision Vb2) cod. Age-disaggregated indices in summer survey (ages 1-10)(1996-2015)


Figure 3.5. Faroe Bank (subdivision Vb2) cod. Length distributions in spring survey (1994-2016). No surveys were conducted in 1996, 2004 and 2005.


Figure 3.6. Faroe Bank (subdivision Vb2) cod. Age-disaggregated indices in spring survey (ages 110) (1994-2015). No surveys were conducted in 1996, 2004 and 2005. Data for 2016 were not available due to lack of age readings.

Recruitment yearclasses of Faroe Bank cod
(correlation from 1995 to 2014 equals 0.86 )


Figure 3.7. Faroe Bank (subdivision Vb 2 ) cod. Correlation between recruitment year classes in both survey indices.


Figure 3.8. Results from the surplus production model using summer index. Observed (points) and expected catch rates ( $\mathrm{kg} / \mathrm{hour}$ ) (top panel). Estimated fishing mortality (black line) and exploitation ratios (ratio of spring index to landings)(green line) (ratio of summer index to landings)(red line)(middle panel). Model residuals in log scale (bottom panel)


Figure 3.9. Results from the surplus production model using spring index. Observed (points) and expected catch rates (kg/hour) (top panel). Estimated fishing mortality (black line) and exploitation ratios (ratio of spring index to landings)(green line) (ratio of summer index to landings)(red line)(middle panel). Model residuals in log scale (bottom panel)


#### Abstract

Summary The input data consisted of the catch-at-age matrix (ages $2-10+$ years) for the period 1959-2015 and two age-disaggregated abundance indices obtained from the two Faroese groundfish surveys: spring survey 1994-2016 (shifted back to the previous year) and summer survey 1996-2015. The maturities were obtained from spring survey 19832016.

The assessment settings were the same as in the 2015 assessment. An XSA was run and tuned with the two survey indices. The fishing mortality in 2015 (average of ages 3-7 years) was estimated at 0.46 , which was higher than the FMSY of 0.32 . The total stock size (age $2+$ ) at the beginning of 2015 was estimated at 28500 tonnes and the spawningstock biomass at 19700 tonnes, which was slightly below the limit biomass of 21000 tonnes.

The short-term prediction until year 2018 showed a slightly decreasing total-stock biomass to 25000 tonnes and a spawning-stock biomass to 19000 tonnes.

It is advised to reduce the fishing mortality substantially to rebuild the stock.

\subsection*{4.1 Stock description and management units}

Both genetic and tagging data suggest that there are three cod stocks present in Faroese waters: on the Faroe Bank (Division 5.b.2), on the Faroe Plateau (Division 5.b.1) and on the Faroe-Iceland Ridge. Cod on the Faroe-Iceland Ridge seem to belong to the cod stock at Iceland, and the WG in 2005 decided to exclude these catches from the catch-at-age calculations. The annex provides more information.


### 4.2 Scientific data

### 4.2.1 Trends in landings and fisheries

The landings were obtained from the Fisheries Ministry and Statistics Faroe Islands. The landings are presented in Table 4.2.1 and the working group estimates are presented in Table 4.2.2. The catches on the Faroe-Iceland Ridge, i.e. for the large single trawlers and the large longliners were not included in the catch-at-age calculations. This year the catch figures back to 1999 on the Faroe-Iceland Ridge were revised. They were extracted from the database on the Faroese Coastal Guard directly using their definition of the relevant area. In recent years the longliners have taken the majority of the cod catches (Table 4.2.3).

### 4.2.2 Catch-at-age

Landings-at-age for 2015 are provided for the Faroese fishery in Table 4.2.4. Faroese landings from most of the fleet categories were sampled (Table 4.2.5). The catch-at-age is shown in Table 4.2.6. Catch curves are shown in Figure 4.2.1.

### 4.2.3 Weight-at-age

Mean weight-at-age data are provided for the Faroese fishery in Table 4.2.7. These were calculated using the length/weight relationship based on individual length/weight measurements of samples from the landings. The sum-of-products-check for 2015 showed a discrepancy of $0 \%$. The weights have increased in recent years (Figure 4.2.2).

### 4.2.4 Maturity-at-age

The proportion of mature cod by age during the Faroese groundfish surveys carried out during the spawning period (March) is given in Table 4.2.8 and in Figure 4.2.3. Full maturity is generally reached at age 5 or 6 , but considerable changes have been observed in the proportion mature for younger ages between years.

### 4.2.5 Catch, effort and research vessel data

Fisheries independent cpue series
Spring groundfish surveys in Faroese waters with the research vessel Magnus Heinason is used as a tuning series. The catch curves showed a normal pattern (Figure 4.2.4), i.e. a decreasing trend after age 5 . The stratified mean catch of cod per unit effort (Figure 4.2.5) has been low in the recent years.
The other tuning series used is summer Groundfish Survey. The stratified mean catch of cod per unit effort has been low in recent years (Figure 4.2.5). The catch curves (Figure 4.2.6) show that the fish are fully recruited to the survey gear at an age of 4 or 5 years. The YC2009 was present in nearly constant numbers in summer groundfish survey. Both tuning series are presented in Table 4.2 .9 and they show that there are few small cod in the stock.

Commercial cpue series
Three commercial cpue series (longliners and pairtrawlers) are also presented (Tables 4.2.10, 4.2.11, and 4.2.12 as well as Figure 4.2.7), although they are not used as tuning series. All these series show that the incoming year classes are small. Note that the small boats (0-25 GRT) operating with longlines and jigging reels close to land have had a relatively higher cpue in recent years compared with the other cpue series and the two tuning series (Figure 4.2.8 and Figure 4.2.9), although the larger longliners also have had a high catchability in recent years. When that happens, the recruitment of 2year old cod tends to be low.

### 4.3 Information from the fishing industry

The sampling of the catches is included in the 'scientific data'. The fishing industry has since 1996 gathered data on the size composition of the landings but this information has not been used in this assessment.

### 4.4 Methods

This is an update assessment using XSA and the procedure is described in stock annex and the results of the assessment is mostly data-driven implying that there may be little difference in the assessment results by using another method.

### 4.5 Reference points

The reference points are dealt with in the general section of Faroese stocks. The PA reference points for Faroe Plateau cod are the following: $\mathrm{B}_{\mathrm{pa}}=40 \mathrm{kt}$, Blim $=21 \mathrm{kt}, \mathrm{F}_{\mathrm{pa}}=$ 0.35 and $\mathrm{F}_{\mathrm{lim}}=0.68$.

The reference points based on the yield-per-recruit curve are the following: $\mathrm{F}_{\max }=0.25$, $\mathrm{F}_{0.1}=0.12, \mathrm{~F} 35 \% \mathrm{SPR}=0.18, \mathrm{~F}_{\text {med }}=0.37, \mathrm{~F}_{\text {low }}=0.10, \mathrm{~F}_{\text {high }}=0.91$.

The group adopted in 2011 following preliminary MSY reference points: $\mathrm{F}_{\text {msy }}=0.32$, see section 4.8. The $\mathrm{B}_{\text {trigger }}$ was set at $\mathrm{B}_{\mathrm{pa}}=40 \mathrm{kt}$.

### 4.6 State of the stock - historical and compared to what is now

Since the current assessment is an update assessment, the same procedure is followed as last year: to use the two surveys for tuning. The commercial series showed a similar overall tendency as the surveys (Figure 4.2.7) but were not used in the tuning. The XSA-run (Table 4.6.1) showed that the fit between the model and the tuning series (logQ residuals, Figure 4.6.1) was rather poor for the young ages and there seemed to be both year class effects and year effects.

The results from the XSA-run shows that fishing mortality (F3-7) has increased in recent years (Table 4.6.2, Figure 4.6.2), and other measures of fishing mortality have done so as well (Table 4.6.4, Figure 4.6.3). The population numbers, total biomass and spawning-stock biomass have been low compared with other years in the series (Table 4.6.3, Table 4.6.4, Figure 4.6.2). The poor state of the stock since 2005 has been due to poor recruitment (not poor individual growth). Prior to that time, extremely weak year classes ( $<5$ million individuals) were only observed two times, whereas it has happened four times since 2005. In the past there has been a poor relationship between the size of the spawning stock and subsequent recruitment (Figure 4.6.4), but the increasing number of low data points in recent years have strengthened the stock-recruitment relationship. The spawning-stock biomass in the terminal year was below Blim and the fishing mortality above $\mathrm{F}_{\mathrm{MSY}}$ and $\mathrm{Fpa}_{\mathrm{pa}}$ (Figure 4.6.5).
To put the recent low biomass of Faroe Plateau cod into a wider context, and also to provide a basis to evaluate ecosystem properties and biomass reference points, the stock size (age 2+) of Faroe Plateau cod has been estimated back to 1710 (Table 4.6.5, Table 4.6.6, Figure 4.6.6). The first step, estimating the 1906-1958 period, was done in NWWG 2015 whereas the rest was done this year. Scaling Shetland and Faroese cpue series 1859-1914 gave biomass estimates from 1860-1905 (Working Document 24). In the same period there was information about occasional 'good' and 'bad' cod years. It happened that 'bad' years corresponded to approximately 80 thousand tons of cod and 'good' years to approximately 220 thousand tons of cod. Information about occasional 'good' and 'bad' years were available back to the seventeenth century, i.e. the biomass was roughly known for these years. From 1709 to 1856 the Royal Monopoly Trade (Den Kongelige Monopolhandel) recorded export of dried cod from the Faroes almost every year. Based on this export and an effect of year (taking into account an increasing tendency to export dried cod over the years) gave estimates of cod for the 1710-1859 period (Working Document 25, Model 1). An attempt (Model 2, and a factor between dried cod export and biomass 1841-1856) was also made to take account of a possible increased access to landing places during the 1841-1856 period, i.e. that the relationship between dried cod export and biomass had changed compared with the 17101840 period. The biomass estimates were quite different for the 1841-1859 period and more work could therefore be done to evaluate the importance of the potential increased access to landing sites and other technological improvements in the fishery. The results prior to 1906 should be interpreted with care, especially prior to 1860 . The results indicate that the poor state of the stock in recent years is unprecedented the last three centuries.

### 4.7 Short-term forecast

### 4.7.1 Input data

The input data for the short-term prediction are given in Table 4.7.1. Note the extremely weak YC2013 and YC2014, which were set to the face value from the XSA-run,
i.e. according to the Annex. Estimates of stock size (ages 3+) were taken directly from the XSA stock numbers. The exploitation pattern was estimated as the average fishing mortality for 2013-2015 and scaled to the 2015 value. The weights at age in the catches in 2016 were estimated from spring survey (ages 2 and $6-8$ years) whereas the other ages were estimated from the catch weights in January-February 2016. The weights in the catches in 2017 were set to the values in 2016 and the average of 2014-2016 was expected for 2018. The proportion mature in 2016 was set to the 2016 values from spring groundfish survey, and for 2017-2018 to the average values for 2014-2016.

### 4.7.2 Results

The landings in 2016 are expected to be 7500 tonnes (Table 4.7.2) (the landings from the Faroe-Icelandic ridge should be added to this figure in order to get the total Faroese landings within the 5.b. 1 area). The spawning-stock biomass is expected to be 22400 tonnes in 2016, 20200 tonnes in 2017 and eventually 18900 tonnes in 2017. Many year classes contribute to the SSB in 2017-18 (Figure 4.7.1).

### 4.8 Long-term forecast

The input to the traditional long-term forecast (yield-per-recruit) is presented in Table 4.8.1 and the result is presented in Table 4.8.2 and Figure 4.8.1.

Single species long-term forecasts for Faroe Plateau cod indicated Fmsy values lower than $\mathrm{F}_{\mathrm{pa}}$. An FLR procedure (MSE, Management strategy evaluations using FLR standard packages; a simulation of management and stock response over a 20 yr period) for Faroe Plateau cod indicates that $\mathrm{F}_{\mathrm{mSY}}$ is 0.32 . This value ( 0.32 ) was adopted by the NWWG 2011 as a preliminary Fmsy.

### 4.9 Uncertainties in assessment and forecast

Since there is no incentive to discard fish or misreport catches under the effort management system, the catch figures are considered adequate, as well as the catch-at-age, although the number of otoliths should have been higher.

The retrospective pattern indicates less uncertainty in the assessment than seen some years ago (Figure 4.9.1).

Steingrund et al. (2010) found that the recruitment of Faroe Plateau cod (age 2) could be rather precisely estimated as there is a relationship between cod biomass (age 3+) and the amount of cannibalistic cod in nearshore waters in June-October the previous year. This approach showed that the recent year classes were extremely weak (Figure 4.9.2).

### 4.10 Comparison with previous assessment and forecast

The assessment settings were according to the Stock Annex. The 2016 assessment was much in line with the 2015 assessment and forecast (Figure 4.10.1).

### 4.11 Management plans and evaluations

There is no explicit management plan for this stock. A management system based on number of fishing days, closed areas and other technical measures was introduced in 1996 with the purpose to ensuring sustainable demersal fisheries in subarea 5.b. This was before ICES introduced PA and MSY reference values and at the time it was believed that the purpose was achieved, if the total allowable number of fishing days was
set such that on average $33 \%$ of the cod exploitable stock in numbers would be harvested annually. This translates into an average F of 0.45 , above the $\mathrm{F}_{\mathrm{pa}}$ of 0.35 . ICES considers this to be inconsistent with the PA and MSY approaches. Some work has been done in the Faroes to move away from the Ftarget of 0.45 to be more consistent with the ICES advice. A committee set by Faroese authorities to evaluate the management system will deliver its recommendations in summer 2016. The recommendations along with political modifications are expected to be set in force in 2018.

### 4.12 Management considerations

The cod stock is assessed to be in a very poor state and is predicted to remain so for the next two years due to poor recruitment. Although the environmental conditions have been rather special since 2007 (lots of mackerel) and may partly be responsible for the poor state of the cod stock, it is certainly necessary to protect the cod stock as much as possible. The reason is not only that it may prevent a total collapse of the stock but also that the stock may recover faster in future. Hence, a reduction in fishing mortality is urgently needed.

### 4.13 Ecosystem considerations

Regarding the ecosystem effects on fishing, this issue is partly addressed in the ecological modelling work presented in the overview section for Faroese stocks.

### 4.14 Regulations and their effects

There seems to be a poor relationship between the number of fishing days and the fishing mortality because of large fluctuations in catchability. Area restrictions may help to reduce fishing mortality, but they cause practical problems for the fishing fleets (e.g. high concentrations of vessels in certain areas). Area restrictions may be best suited to protect certain fish species/sizes in certain areas, whereas the number of fishing days remains the only tool to reduce the overall fishing mortality, given the effort management system.

The area closure (for commercial longliners close to land) introduced in July 2011 and ending in August 2013 to protect young fish has not yet resulted in strong recruitment, since the 2008 year class is below average size, and the 2009-2011 year classes either poor or exceptionally poor.

### 4.15 Changes in fishing technology and fishing patterns

Fishing effort per fishing day may have increased gradually since the effort management system was introduced in 1996, although little direct quantitative information exists. There also seems to have been substantial increases in fishing power when new vessels are replacing old vessels.

The fishing pattern in recent years has changed compared with previous years. The large longliners seem to have exploited the deep areas (> 200 m ) to a larger extent (ling and tusk) because the catches in shallower waters of cod and haddock have been so poor - which was also observed at the beginning of the 1990s. They also have fished in other areas, e.g. in Greenland and on the Flemish Cap. This could reduce the fishing mortality on cod and haddock, but the small longliners and jiggers still exploit the shallow areas.

### 4.16 Changes in the environment

The primary production has been low for a number of years, albeit high in 2008-2010, but it is not believed that this has any relationship with a change in the environment. The temperature has been high in recent years (although it has been a little bit cooler in 2014-2015), which may have a negative effect on cod recruitment (Planque and Fredou, 1999).

### 4.17 References

ICES, 2009. Report of the North Western Working Group. ICES CM 2009/ACOM: 4. 655 pp.
ICES, 2011. Report of the North Western Working Group. ICES CM 2011/ACOM:7. 975 pp.
ICES, 2012. Report of the North Western Working Group. ICES CM 2012/ACOM:7. 850 pp.
Jákupsstovu, S. H. and Reinert, J. 1994. Fluctuations in the Faroe Plateau cod stock. ICES Marine Science Symposia, 198:194-211.

Jones, B. W. 1966. The cod and the cod fishery at the Faroe. Fishery Investigations, London, 24.
Planque, B., and Fredou, T. 1999. Temperature and the recruitment of Atlantic cod (Gadus morhua). Canandian Journal of Fisheries and Aquatic Sciences. 56: 2069-2077.

Steingrund, P., Gaard, E., Reinert, J., Olsen, B., Homrum, E., and Eliasen, K. 2012. Trophic relationships on the Faroe Shelf ecosystem and potential ecosystem states. Manuscript in PhDthesis by Eydna í Homrum, defended in 2012.

Steingrund, P., Mouritsen, R., Reinert, J., Gaard, E., and Hátún, H. 2010. Total stock size and cannibalism regulate recruitment in cod (Gadus morhua) on the Faroe Plateau. ICES Journal of Marine Science, 67: 111-124.

### 4.18 Tables

Table 4.2.1. Faroe Plateau cod (subdivision 5.b.1). Nominal catch ( $\mathbf{t}$ ) by countries, as officially reported to ICES.

| Denmark Faroe Islands France |  |  |  | Germany | Iceland | Norway | Greenland Portugal | UK (E/W/NI) | UK (Scotland) | United Kingdom | Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1986 | 8 | 34492 | 4 | 8 |  | 83 | - | 0 | 0 | - | 34595 |
| 1987 | 30 | 21303 | 17 | 12 |  | 21 | - | 8 | 0 | - | 21391 |
| 1988 | 10 | 22272 | 17 | 5 |  | 163 | - | 0 | 0 | - | 22467 |
| 1989 | - | 20535 | - | 7 |  | 285 | - | 0 | 0 | - | 20827 |
| 1990 | - | 12232 | - | 24 |  | 124 | - | 0 | 0 | - | 12380 |
| 1991 | - | 8203 |  | 16 |  | 89 | - | 1 | 0 | - | 8309 |
| 1992 | - | 5938 |  | 12 |  | 39 | - | 74 | 0 | - | 6066 |
| 1993 | - | 5744 | 1 | + |  | 57 | - | 186 | 0 | - | 5988 |
| 1994 | - | 8724 | - | $2 \cdots$ |  | 36 | - | 56 | 0 | - | 8818 |
| 1995 | - | 19079 |  | 2 |  | 38 | - | 43 | 0 | - | 19164 |
| 1996 | - | 39406 | 1 | + |  | 507 | - | 126 | 0 | - | 40040 |
| 1997 | - | 33556 | - | + |  | 410 | - | $61^{\cdots}$ | 0 | - | 34027 |
| 1998 | - | 23308 |  | - |  | 405 | - | $27^{*}$ | 0 | - | 23740 |
| 1999 | - | 19156 |  | 39 | - | 450 | - | 51 | 0 |  | 19696 |
| 2000 |  | 0 | 1 | 2 | - | 374 | - | 18 | 0 |  | 395 |
| 2001 |  | 29762 |  | 9 | - | 531 * | - | 50 | 0 |  | 30361 |
| 2002 |  | 40602 | 20 | 6 | 5 | 573 |  | 42 | 0 |  | 41248 |
| 2003 |  | 30259 | 14 | 7 | - | 447 | - | 15 | 0 |  | 30742 |
| 2004 |  | 17540 | 2 | $3 \cdots$ |  | 414 | 1 | 15 | 0 |  | 17975 |
| 2005 |  | 13556 | - |  |  | 201 |  | 24 | 0 |  | 13781 |
| 2006 |  | 11629 | 7 | $1{ }^{\cdots}$ |  | 49 | 5 | 0 | 0 |  | 11691 |
| 2007 |  | 9905 |  |  |  | 71 | 7 | 0 | 360 |  | 10344 |
| 2008 |  | 9394 | 1 |  |  | 40 |  | 0 | 383 |  | 9818 |
| 2009 |  | 10736 | 1 |  |  | 14 | 7 | 0 | 300 |  | 11058 |
| 2010 |  | 13878 | 1 |  |  | 10.338 |  | 0 | 312 |  | 14201 |
| 2011 |  | 11348 | - |  |  | 0 |  | 0 | 0 |  | 11348 |
| 2012 |  | 8437 | 0 |  | 28 | 0 |  | 0 | 0 |  | 8465 |
| 2013 |  | 5331 | 0 |  | 20 | 0 | 2 | 0 | 0 |  | 5333 |
| 2014 |  | 6655 |  |  |  | 6.414 |  | 0 | 226 |  | 6887 |
| 2015 * |  | 7812 |  |  |  | 33 | 14 | 0 | 382 |  | 8241 |

Table 4.2.2. Faroe Plateau cod (subdivision 5.b.1). Nominal catch (t) used in the assessment.


Table 4.2.3. Faroe Plateau cod (subdivision 5.b.1). The landings of Faroese fleets (in percent) of total catch ( $\mathbf{t}$ ). Note that the catches on the Faroe-Iceland ridge (mainly belonging to single trawl-ers > 1000 HP ) are included in this table, but excluded in the XSA-run.

| Year |  | Open <br> boats |  | $\begin{aligned} & \text { Longliners } \\ & <100 \text { GRT } \end{aligned}$ | Singletrawl $<400 \mathrm{HP}$ | $\begin{aligned} & \text { Gill } \\ & \text { net } \end{aligned}$ |  | Jiggers |  | $\begin{aligned} & \hline \text { Singletrawl } \\ & 400-1000 \mathrm{HP} \end{aligned}$ | Singletrawl $>1000 \mathrm{HP}$ | $\begin{aligned} & \hline \text { Pairtrawl } \\ & <1000 \mathrm{HP} \end{aligned}$ | Pairtrawl $>1000 \mathrm{HP}$ | $\begin{aligned} & \text { Longliners } \\ & >100 \text { GRT } \end{aligned}$ | Industrial trawlers | Others |  | Faroe catch <br> Round.weight |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1985 |  | 16.0 | 27.2 |  | . 7 | 0.6 |  | 4.3 | 7.9 | 11.2 | 12.3 | 5.6 | 7.5 |  | 0.2 | 0.6 | 39,422 |
|  | 1986 |  | 9.5 | 15.1 |  | . 1 | 1.3 |  | 2.9 | 6.2 | 8.5 | 29.6 | 14.9 | 5.1 |  | 0.4 | 1.3 | 34,492 |
|  | 1987 |  | 9.9 | 14.8 |  | . 2 | 0.5 |  | 2.9 | 6.7 | 8.0 | 26.0 | 14.5 | 9.9 |  | 0.5 | 0.1 | 21,303 |
|  | 1988 |  | 2.6 | 13.8 |  | . 9 | 2.6 |  | 7.5 | 7.4 | 6.8 | 25.3 | 15.6 | 12.7 |  | 0.6 | 0.2 | 22,272 |
|  | 1989 |  | 4.4 | 29.0 |  | . 7 | 3.2 |  | 9.3 | 5.7 | 5.5 | 10.5 | 8.3 | 17.7 |  | 0.7 | 0.0 | 20,535 |
|  | 1990 |  | 3.9 | 35.5 |  | . 8 | 1.4 |  | 8.2 | 3.7 | 4.3 | 7.1 | 10.5 | 19.6 |  | 0.6 | 0.2 | 12,232 |
|  | 1991 |  | 4.3 | 31.6 |  | 7.1 | 2.0 |  | 8.0 | 3.4 | 4.7 | 8.3 | 12.9 | 17.2 |  | 0.6 | 0.1 | 8,203 |
|  | 1992 |  | 2.6 | 26.0 |  | . 9 | 0.0 |  | 7.0 | 2.2 | 3.6 | 12.0 | 20.8 | 13.4 |  | 5.0 | 0.4 | 5,938 |
|  | 1993 |  | 2.2 | 16.0 | 15. |  | 0.0 |  | 9.0 | 4.1 | 3.6 | 14.2 | 21.7 | 12.6 |  | 0.8 | 0.4 | 5,744 |
|  | 1994 |  | 3.1 | 13.4 |  | . 6 | 0.5 |  | 19.2 | 2.7 | 5.3 | 8.3 | 23.7 | 13.7 |  | 0.5 | 0.1 | 8,724 |
|  | 1995 |  | 4.2 | 17.9 |  | . 5 | 0.3 |  | 24.9 | 4.1 | 4.7 | 6.4 | 12.3 | 18.5 |  | 0.1 | 0.0 | 19,079 |
|  | 1996 |  | 4.0 | 19.0 |  | . 0 | 0.0 |  | 20.0 | 3.0 | 2.0 | 8.0 | 19.0 | 21.0 |  | 0.0 | 0.0 | 39,406 |
|  | 1997 |  | 3.1 | 28.4 |  | . 4 | 0.5 |  | 9.8 | 5.1 | 2.9 | 4.8 | 11.3 | 29.7 |  | 0.0 | 0.1 | 33,556 |
|  | 1998 |  | 2.4 | 31.2 |  | . 0 | 1.3 |  | 6.5 | 6.3 | 5.5 | 3.1 | 8.6 | 29.1 |  | 0.1 | 0.0 | 23,308 |
|  | 1999 |  | 2.7 | 24.0 |  | . 4 | 2.3 |  | 5.4 | 5.2 | 11.8 | 6.4 | 14.5 | 21.9 |  | 0.4 | 0.1 | 19,156 |
|  | 2000 |  | 2.3 | 19.3 |  | . 1 | 0.9 |  | 10.5 | 9.6 | 12.7 | 5.7 | 13.9 | 15.7 |  | 0.1 | 0.1 | 21,793 |
|  | 2001 |  | 3.7 | 28.3 |  | . 4 | 0.2 |  | 15.6 | 6.4 | 6.4 | 5.2 | 9.2 | 17.8 |  | 0.0 | 0.0 | 28,838 |
|  | 2002 |  | 3.8 | 32.9 |  | . 8 | 0.3 |  | 9.9 | 6.7 | 6.6 | 2.5 | 7.2 | 24.4 |  | 0.0 | 0.0 | 38,347 |
|  | 2003 |  | 4.9 | 28.7 |  | . 0 | 1.5 |  | 7.4 | 3.0 | 14.4 | 2.2 | 7.4 | 26.5 |  | 0.0 | 0.0 | 29,382 |
|  | 2004 |  | 4.4 | 31.1 |  | . 1 | 0.5 |  | 6.6 | 1.6 | 12.9 | 2.2 | 11.7 | 26.8 |  | 0.0 | 0.0 | 16,772 |
|  | 2005 |  | 3.7 | 27.5 |  | . 1 | 0.8 |  | 5.4 | 2.4 | 28.1 | 1.7 | 6.4 | 18.8 |  | 0.0 | 0.0 | 15,472 |
|  | 2006 |  | 6.2 | 35.0 |  | . 2 | 0.2 |  | 7.1 | 1.6 | 12.9 | 2.5 | 6.6 | 24.7 |  | 0.0 | 0.0 | 8,636 |
|  | 2007 |  | 5.1 | 28.2 |  | . 6 | 0.3 |  | 6.1 | 1.7 | 17.5 | 1.7 | 4.8 | 32.0 |  | 0.0 | 0.0 | 8,866 |
|  | 2008 |  | 5.1 | 32.7 |  | . 7 | 0.7 |  | 6.4 | 3.2 | 14.6 | 1.0 | 3.1 | 28.6 |  | 0.0 | 0.0 | 7,666 |
|  | 2009 |  | 6.9 | 41.6 |  | . 3 | 0.3 |  | 10.1 | 2.5 | 1.9 | 2.8 | 6.5 | 23.0 |  | 0.0 | 0.0 | 7,146 |
|  | 2010 |  | 6.2 | 31.9 |  | . 7 | 0.0 |  | 12.6 | 1.3 | 1.4 | 3.4 | 9.6 | 30.8 |  | 0.0 | 0.0 | 10,258 |
|  | 2011 |  | 3.6 | 26.5 |  | . 4 | 0.1 |  | 6.7 | 1.3 | 1.4 | 3.1 | 21.9 | 31.9 |  | 0.0 | 0.0 | 9,502 |
|  | 2012 |  | 2.7 | 23.5 |  | . 9 | 0.0 |  | 5.3 | 1.1 | 2.6 | 5.3 | 21.5 | 32.9 |  | 0.0 | 0.0 | 6,378 |
|  | 2013 |  | 4.6 | 26.3 |  | . 3 | 0.2 |  | 8.0 | 2.3 | 2.0 | 4.0 | 15.9 | 30.2 |  | 0.0 | 0.0 | 4,749 |
|  | 2014 |  | 8.7 | 28.0 |  | . 4 | 0.4 |  | 6.4 | 1.2 | 5.2 | 2.5 | 12.3 | 28.7 |  | 0.0 | 0.0 | 5,699 |
|  | 2015 |  | 9.0 | 26.0 |  | . 6 | 0.1 |  | 9.1 | 2.1 | 4.2 | 2.2 | 10.9 | 26.9 |  | 0.0 | 0.0 | 5,890 |
| $\overline{\text { Average }}$ |  |  | 5.0 | 26.1 |  | . 8 | 0.8 |  | 9.0 | 3.9 | 7.5 | 7.4 | 12.4 | 21.6 |  | 0.3 | 0.1 |  |

Table 4.2.4. Faroe Plateau cod (subdivision 5.b.1). Catch in numbers-at-age per fleet in terminal year. Numbers are in thousands and the catch is in tonnes, gutted weight.


Others include gillnetters, industrial bottom trawlers, longlining for halibut, foreign fleets, and scaling to correct catch.
Gutted total catch is calculated as round weight divided by 1.11.

Table 4.2.5. Faroe Plateau cod (subdivision 5.b.1). Number of samples, lengths, otoliths, and individual weights in terminal year.

| Fleet | Size | Samples | Lengths | Otoliths | Weights |
| :--- | :--- | ---: | ---: | ---: | ---: |
| Open boats |  | 4 | 794 | 80 | 794 |
| Longliners | $<100$ GRT | 8 | 1,561 | 160 | 1,561 |
| Longliners | $>100$ GRT | 17 | 3,529 | 358 | 3,529 |
| Jiggers |  | 0 | 0 | 0 | 0 |
| Gillnetters |  | 0 | 0 | 0 | 0 |
| Sing. trawlers | $<400 \mathrm{HP}$ | 0 | 0 | 0 | 0 |
| Sing. trawlers | $400-1000 \mathrm{HP}$ | 11 | 1,981 | 200 | 1,981 |
| Sing. trawlers | $>1000 \mathrm{HP}$ | 0 | 0 | 0 | 0 |
| Pair trawlers | $<1000 \mathrm{HP}$ | 0 | 0 | 0 | 0 |
| Pair trawlers | $>1000 \mathrm{HP}$ | 29 | 5,575 | 439 | 4,412 |
| Total |  | 69 | 13,440 | 1,237 | 12,277 |

Table 4.2.6. Faroe Plateau cod (subdivision 5.b.1). Catch in numbers-at-age used in the XSA model.

| Year \ate | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10+ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1959 | 0 | 2002 | 4239 | 858 | 1731 | 200 | 207 | 50 | 10 | 0 |
| 1960 | 0 | 4728 | 4027 | 2574 | 513 | 876 | 171 | 131 | 61 | 0 |
| 1961 | 0 | 3093 | 2686 | 1331 | 1066 | 232 | 372 | 78 | 29 | 0 |
| 1962 | 0 | 4424 | 2500 | 1255 | 855 | 481 | 93 | 94 | 22 | 0 |
| 1963 | 0 | 4110 | 3958 | 1280 | 662 | 284 | 204 | 48 | 30 | 0 |
| 1964 | 0 | 2033 | 3021 | 2300 | 630 | 350 | 158 | 79 | 41 | 0 |
| 1965 | 0 | 852 | 3230 | 2564 | 1416 | 363 | 155 | 48 | 63 | 0 |
| 1966 | 0 | 1337 | 970 | 2080 | 1339 | 606 | 197 | 104 | 33 | 0 |
| 1967 | 0 | 1609 | 2690 | 860 | 1706 | 847 | 309 | 64 | 27 | 0 |
| 1968 | 0 | 1529 | 3322 | 2663 | 945 | 1226 | 452 | 105 | 11 | 0 |
| 1969 | 0 | 878 | 3106 | 3300 | 1538 | 477 | 713 | 203 | 92 | 0 |
| 1970 | 0 | 402 | 1163 | 2172 | 1685 | 752 | 244 | 300 | 44 | 0 |
| 1971 | 0 | 328 | 757 | 821 | 1287 | 1451 | 510 | 114 | 179 | 0 |
| 1972 | 0 |  | 1176 | 810 | 596 | 1021 | 596 | 154 | 25 | 0 |
| 1973 | 0 |  | 3124 | 1590 | 707 | 384 | 312 | 227 | 120 | 97 |
| 1974 | 0 | 2161 | 1266 | 1811 | 934 | 563 | 452 | 149 | 141 | 91 |
| 1975 | 0 | 2584 | 5689 | 2157 | 2211 | 813 | 295 | 190 | 118 | 150 |
| 1976 | 0 | 1497 | 4158 | 3799 | 1380 | 1427 | 617 | 273 | 120 | 186 |
| 1977 | 0 |  | 3282 | 6844 | 3718 | 788 | 1160 | 239 | 134 | 9 |
| 1978 | 0 |  | 1219 | 2643 | 3216 | 1041 | 268 | 201 | 66 | 56 |
| 1979 | 0 | 575 | 1732 | 1673 | 1601 | 1906 | 493 | 134 | 87 | 38 |
| 1980 | 0 | 1129 | 2263 | 1461 | 895 | 807 | 832 | 339 | 42 | 18 |
| 1981 | 0 | 646 | 4137 | 1981 | 947 | 582 | 487 | 527 | 123 | 55 |
| 1982 | 0 | 1139 | 1965 | 3073 | 1286 | 471 | 314 | 169 | 254 | 122 |
| 1983 | 0 | 2149 | 5771 | 2760 | 2746 | 1204 | 510 | 157 | 104 | 102 |
| 1984 | 0 | 4396 | 5234 | 3487 | 1461 | 912 | 314 | 82 | 34 | 66 |
| 1985 | 0 |  | 9484 | 3795 | 1669 | 770 | 872 | 309 | 65 | 80 |
| 1986 | 0 | 210 | 3586 | 8462 | 2373 | 907 | 236 | 147 | 47 | 38 |
| 1987 | 0 | 257 | 1362 | 2611 | 3083 | 812 | 224 | 68 | 69 | 26 |
| 1988 | 0 | 509 | 2122 | 1945 | 1484 | 2178 | 492 | 168 | 33 | 25 |
| 1989 | 0 | 2237 | 2151 | 2187 | 1121 | 1026 | 997 | 220 | 61 | 9 |
| 1990 | 0 | 247 | 2892 | 1504 | 865 | 410 | 298 | 295 | 51 | 26 |
| 1991 | 0 | 192 | 451 | 2152 | 622 | 303 | 142 | 93 | 53 | 24 |
| 1992 | 0 | 205 | 455 | 466 | 911 | 293 | 132 | 53 | 30 | 34 |
| 1993 | 0 |  | 802 | 603 | 222 | 329 | 96 | 33 | 22 | 25 |
| 1994 | 0 | 573 | 788 | 1062 | 532 | 125 | 176 | 39 | 23 | 16 |
| 1995 | 0 | 2615 | 2716 | 2008 | 1012 | 465 | 118 | 175 | 44 | 49 |
| 1996 | 0 | 351 | 5164 | 4608 | 1542 | 1526 | 596 | 147 | 347 | 47 |
| 1997 | 0 | 200 | 1278 | 6710 | 3731 | 657 | 639 | 170 | 51 | 120 |
| 1998 | 0 |  | 745 | 1558 | 5140 | 1529 | 159 | 118 | 28 | 25 |
| 1999 | 0 | 1246 | 1044 | 840 | 1164 | 2339 | 461 | 62 | 18 | 8 |


| Year\AGE | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{6}$ | $\mathbf{7}$ | $\mathbf{8}$ | $\mathbf{9}$ | $\mathbf{1 0 +}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2000 | 0 | 2170 | 2737 | 811 | 443 | 700 | 840 | 108 | 8 | 1 |
| 2001 | 0 | 3967 | 3812 | 2130 | 373 | 372 | 728 | 443 | 36 | 6 |
| 2002 | 0 | 2099 | 7354 | 3405 | 1688 | 474 | 538 | 417 | 293 | 7 |
| 2003 | 0 | 697 | 2186 | 4696 | 1979 | 657 | 182 | 94 | 118 | 21 |
| 2004 | 0 | 98 | 673 | 1230 | 2051 | 717 | 234 | 63 | 41 | 36 |
| 2005 | 0 | 504 | 604 | 896 | 1146 | 841 | 208 | 41 | 19 | 31 |
| 2006 | 0 | 1110 | 1097 | 469 | 663 | 801 | 333 | 76 | 10 | 3 |
| 2007 | 0 | 506 | 1226 | 723 | 315 | 289 | 255 | 85 | 20 | 3 |
| 2008 | 0 | 287 | 761 | 783 | 430 | 187 | 157 | 156 | 57 | 19 |
| 2009 | 0 | 873 | 2262 | 861 | 618 | 296 | 85 | 55 | 43 | 17 |
| 2010 | 0 | 2113 | 2034 | 861 | 468 | 481 | 178 | 58 | 33 | 38 |
| 2011 | 0 | 328 | 2343 | 1234 | 365 | 188 | 126 | 50 | 19 | 2 |
| 2012 | 0 | 49 | 517 | 1346 | 555 | 200 | 99 | 69 | 25 | 22 |
| 2013 | 0 | 55 | 173 | 333 | 587 | 175 | 39 | 25 | 15 | 5 |
| 2014 | 0 | 387 | 518 | 286 | 499 | 350 | 86 | 14 | 9 | 1 |
| 2015 | 0 | 156 | 1035 | 522 | 210 | 282 | 221 | 47 | 23 | 7 |

Table 4.2.7. Faroe Plateau cod (subdivision 5.b.1). Mean weight at age (kg) in the catches.

| Year \age | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10+ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1959 | 0.850 | 1.730 | 3.230 | 4.400 | 5.800 | 6.370 | 7.340 | 7.880 | 10.270 |
| 1960 | 1.000 | 2.030 | 3.370 | 4.420 | 6.020 | 6.650 | 8.120 | 11.000 | 10.270 |
| 1961 | 1.080 | 2.220 | 3.450 | 4.690 | 5.520 | 7.090 | 9.910 | 8.030 | 10.270 |
| 1962 | 1.000 | 2.270 | 3.350 | 4.580 | 4.930 | 9.080 | 6.590 | 6.660 | 10.270 |
| 1963 | 1.040 | 1.940 | 3.510 | 4.600 | 5.500 | 6.780 | 8.710 | 11.720 | 10.820 |
| 1964 | 0.970 | 1.830 | 3.150 | 4.330 | 6.080 | 7.000 | 6.250 | 6.190 | 14.390 |
| 1965 | 0.920 | 1.450 | 2.570 | 3.780 | 5.690 | 7.310 | 7.930 | 8.090 | 11.110 |
| 1966 | 0.980 | 1.770 | 2.750 | 3.510 | 4.800 | 6.320 | 7.510 | 10.340 | 11.650 |
| 1967 | 0.960 | 1.930 | 3.130 | 4.040 | 4.780 | 6.250 | 7.000 | 11.010 | 10.690 |
| 1968 | 0.880 | 1.720 | 3.070 | 4.120 | 4.650 | 5.500 | 7.670 | 10.950 | 9.280 |
| 1969 | 1.090 | 1.800 | 2.850 | 3.670 | 4.890 | 5.050 | 7.410 | 8.660 | 14.390 |
| 1970 | 0.960 | 2.230 | 2.690 | 3.940 | 5.140 | 6.460 | 10.310 | 7.390 | 9.340 |
| 1971 | 0.810 | 1.800 | 2.980 | 3.580 | 3.940 | 4.870 | 6.480 | 6.370 | 10.220 |
| 1972 | 0.660 | 1.610 | 2.580 | 3.260 | 4.290 | 4.950 | 6.480 | 6.900 | 11.550 |
| 1973 | 1.110 | 2.000 | 3.410 | 3.890 | 5.100 | 5.100 | 6.120 | 8.660 | 7.570 |
| 1974 | 1.080 | 2.220 | 3.440 | 4.800 | 5.180 | 5.880 | 6.140 | 8.630 | 7.620 |
| 1975 | 0.790 | 1.790 | 2.980 | 4.260 | 5.460 | 6.250 | 7.510 | 7.390 | 8.170 |
| 1976 | 0.940 | 1.720 | 2.840 | 3.700 | 5.260 | 6.430 | 6.390 | 8.550 | 13.620 |
| 1977 | 0.870 | 1.790 | 2.530 | 3.680 | 4.650 | 5.340 | 6.230 | 8.380 | 10.720 |
| 1978 | 1.112 | 1.385 | 2.140 | 3.125 | 4.363 | 5.927 | 6.348 | 8.715 | 12.229 |
| 1979 | 0.897 | 1.682 | 2.211 | 3.052 | 3.642 | 4.719 | 7.272 | 8.368 | 13.042 |
| 1980 | 0.927 | 1.432 | 2.220 | 3.105 | 3.539 | 4.392 | 6.100 | 7.603 | 9.668 |
| 1981 | 1.080 | 1.470 | 2.180 | 3.210 | 3.700 | 4.240 | 4.430 | 6.690 | 10.000 |


| Year \age | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10+ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1982 | 1.230 | 1.413 | 2.138 | 3.107 | 4.012 | 5.442 | 5.563 | 5.216 | 6.707 |
| 1983 | 1.338 | 1.950 | 2.403 | 3.107 | 4.110 | 5.020 | 5.601 | 8.013 | 8.031 |
| 1984 | 1.195 | 1.888 | 2.980 | 3.679 | 4.470 | 5.488 | 6.466 | 6.628 | 10.981 |
| 1985 | 0.905 | 1.658 | 2.626 | 3.400 | 3.752 | 4.220 | 4.739 | 6.511 | 10.981 |
| 1986 | 1.099 | 1.459 | 2.046 | 2.936 | 3.786 | 4.699 | 5.893 | 9.700 | 8.815 |
| 1987 | 1.093 | 1.517 | 2.160 | 2.766 | 3.908 | 5.461 | 6.341 | 8.509 | 9.811 |
| 1988 | 1.061 | 1.749 | 2.300 | 2.914 | 3.109 | 3.976 | 4.896 | 7.087 | 8.287 |
| 1989 | 1.010 | 1.597 | 2.200 | 2.934 | 3.468 | 3.750 | 4.682 | 6.140 | 9.156 |
| 1990 | 0.945 | 1.300 | 1.959 | 2.531 | 3.273 | 4.652 | 4.758 | 6.704 | 8.689 |
| 1991 | 0.779 | 1.271 | 1.570 | 2.524 | 3.185 | 4.086 | 5.656 | 5.973 | 8.147 |
| 1992 | 0.989 | 1.364 | 1.779 | 2.312 | 3.477 | 4.545 | 6.275 | 7.619 | 9.725 |
| 1993 | 1.155 | 1.704 | 2.421 | 3.132 | 3.723 | 4.971 | 6.159 | 7.614 | 9.587 |
| 1994 | 1.194 | 1.843 | 2.613 | 3.654 | 4.584 | 4.976 | 7.146 | 8.564 | 8.796 |
| 1995 | 1.218 | 1.986 | 2.622 | 3.925 | 5.180 | 6.079 | 6.241 | 7.782 | 8.627 |
| 1996 | 1.016 | 1.737 | 2.745 | 3.800 | 4.455 | 4.978 | 5.270 | 5.593 | 7.482 |
| 1997 | 0.901 | 1.341 | 1.958 | 3.012 | 4.158 | 4.491 | 5.312 | 6.172 | 7.056 |
| 1998 | 1.004 | 1.417 | 1.802 | 2.280 | 3.478 | 5.433 | 5.851 | 7.970 | 8.802 |
| 1999 | 1.050 | 1.586 | 2.350 | 2.774 | 3.214 | 5.496 | 8.276 | 9.129 | 10.652 |
| 2000 | 1.416 | 2.170 | 3.187 | 3.795 | 4.048 | 4.577 | 8.182 | 11.895 | 13.009 |
| 2001 | 1.164 | 2.076 | 3.053 | 3.976 | 4.394 | 4.871 | 5.563 | 7.277 | 12.394 |
| 2002 | 1.017 | 1.768 | 2.805 | 3.529 | 4.095 | 4.475 | 4.650 | 6.244 | 7.457 |
| 2003 | 0.820 | 1.362 | 2.127 | 3.329 | 4.092 | 4.670 | 6.000 | 6.727 | 6.810 |
| 2004 | 1.037 | 1.154 | 1.693 | 2.363 | 3.830 | 5.191 | 6.326 | 7.656 | 9.573 |
| 2005 | 0.986 | 1.373 | 1.760 | 2.293 | 3.138 | 5.287 | 8.285 | 8.703 | 9.517 |
| 2006 | 0.839 | 1.304 | 1.988 | 2.386 | 3.330 | 4.691 | 7.635 | 9.524 | 11.990 |
| 2007 | 0.937 | 1.324 | 1.970 | 3.076 | 3.529 | 4.710 | 6.464 | 9.461 | 9.509 |
| 2008 | 1.209 | 1.478 | 2.104 | 2.714 | 3.804 | 4.669 | 5.915 | 7.233 | 9.559 |
| 2009 | 0.805 | 1.431 | 2.287 | 2.723 | 3.435 | 5.081 | 6.281 | 8.312 | 9.959 |
| 2010 | 1.049 | 1.642 | 2.400 | 3.212 | 3.678 | 4.774 | 5.973 | 7.094 | 9.800 |
| 2011 | 0.815 | 1.367 | 2.413 | 3.493 | 4.525 | 5.076 | 6.631 | 6.863 | 10.089 |
| 2012 | 1.007 | 1.315 | 1.893 | 3.102 | 4.279 | 5.573 | 5.871 | 7.482 | 9.206 |
| 2013 | 1.011 | 1.527 | 2.528 | 3.180 | 4.672 | 6.776 | 6.966 | 9.028 | 10.324 |
| 2014 | 1.099 | 1.653 | 2.466 | 3.000 | 4.148 | 6.489 | 9.394 | 9.236 | 12.120 |
| 2015 | 1.198 | 1.733 | 2.769 | 3.650 | 4.403 | 5.768 | 8.035 | 10.334 | 11.127 |
| 2016 | 1.057 | 1.857 | 2.706 | 3.686 | 4.237 | 5.057 | 6.472 | 9.644 | 9.644 |

Table 4.2.8. Faroe Plateau cod (subdivision 5.b.1). Proportion mature at age. From 1961-1982 the average from 1983-1996 is used (as it was used in the 1990s). In 2002, the high maturities for age 2 in 1983 (0.63), 1984 (0.4) and in 1993 (0.25) were revised, but not the maturities back in time.

| Year/ | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10+ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1959 | 0.00 | 0.17 | 0.64 | 0.87 | 0.95 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| 1960 | 0.00 | 0.17 | 0.64 | 0.87 | 0.95 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| 1961 | 0.00 | 0.17 | 0.64 | 0.87 | 0.95 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| 1962 | 0.00 | 0.17 | 0.64 | 0.87 | 0.95 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| 1963 | 0.00 | 0.17 | 0.64 | 0.87 | 0.95 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| 1964 | 0.00 | 0.17 | 0.64 | 0.87 | 0.95 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| 1965 | 0.00 | 0.17 | 0.64 | 0.87 | 0.95 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| 1966 | 0.00 | 0.17 | 0.64 | 0.87 | 0.95 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| 1967 | 0.00 | 0.17 | 0.64 | 0.87 | 0.95 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| 1968 | 0.00 | 0.17 | 0.64 | 0.87 | 0.95 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| 1969 | 0.00 | 0.17 | 0.64 | 0.87 | 0.95 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| 1970 | 0.00 | 0.17 | 0.64 | 0.87 | 0.95 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| 1971 | 0.00 | 0.17 | 0.64 | 0.87 | 0.95 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| 1972 | 0.00 | 0.17 | 0.64 | 0.87 | 0.95 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| 1973 | 0.00 | 0.17 | 0.64 | 0.87 | 0.95 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| 1974 | 0.00 | 0.17 | 0.64 | 0.87 | 0.95 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| 1975 | 0.00 | 0.17 | 0.64 | 0.87 | 0.95 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| 1976 | 0.00 | 0.17 | 0.64 | 0.87 | 0.95 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| 1977 | 0.00 | 0.17 | 0.64 | 0.87 | 0.95 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| 1978 | 0.00 | 0.17 | 0.64 | 0.87 | 0.95 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| 1979 | 0.00 | 0.17 | 0.64 | 0.87 | 0.95 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| 1980 | 0.00 | 0.17 | 0.64 | 0.87 | 0.95 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| 1981 | 0.00 | 0.17 | 0.64 | 0.87 | 0.95 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| 1982 | 0.00 | 0.17 | 0.64 | 0.87 | 0.95 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| 1983 | 0.00 | 0.03 | 0.71 | 0.93 | 0.94 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| 1984 | 0.00 | 0.07 | 0.96 | 0.98 | 0.97 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| 1985 | 0.00 | 0.00 | 0.50 | 0.96 | 0.96 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| 1986 | 0.00 | 0.00 | 0.38 | 0.93 | 1.00 | 1.00 | 0.96 | 0.94 | 1.00 | 1.00 |
| 1987 | 0.00 | 0.00 | 0.67 | 0.91 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| 1988 | 0.00 | 0.06 | 0.72 | 0.90 | 0.97 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| 1989 | 0.00 | 0.05 | 0.54 | 0.98 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| 1990 | 0.00 | 0.00 | 0.68 | 0.90 | 0.99 | 0.96 | 0.98 | 1.00 | 1.00 | 1.00 |
| 1991 | 0.00 | 0.00 | 0.72 | 0.86 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| 1992 | 0.00 | 0.06 | 0.50 | 0.82 | 0.98 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| 1993 | 0.00 | 0.03 | 0.73 | 0.78 | 0.91 | 0.99 | 1.00 | 1.00 | 1.00 | 1.00 |
| 1994 | 0.00 | 0.05 | 0.33 | 0.88 | 0.96 | 1.00 | 0.96 | 1.00 | 1.00 | 1.00 |
| 1995 | 0.00 | 0.09 | 0.35 | 0.33 | 0.66 | 0.97 | 1.00 | 1.00 | 1.00 | 1.00 |
| 1996 | 0.00 | 0.04 | 0.43 | 0.74 | 0.85 | 0.94 | 1.00 | 1.00 | 1.00 | 1.00 |
| 1997 | 0.00 | 0.00 | 0.64 | 0.91 | 0.97 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| 1998 | 0.00 | 0.00 | 0.62 | 0.90 | 0.99 | 0.99 | 1.00 | 1.00 | 1.00 | 1.00 |
| 1999 | 0.00 | 0.02 | 0.43 | 0.88 | 0.98 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| 2000 | 0.00 | 0.02 | 0.39 | 0.69 | 0.92 | 0.99 | 1.00 | 1.00 | 1.00 | 1.00 |


| YEAR/AGE | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{6}$ | $\mathbf{7}$ | $\mathbf{8}$ | $\mathbf{9}$ | $\mathbf{1 0 +}$ |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 2001 | 0.00 | 0.07 | 0.47 | 0.86 | 0.94 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| 2002 | 0.00 | 0.04 | 0.37 | 0.76 | 0.97 | 0.93 | 0.97 | 1.00 | 1.00 | 1.00 |
| 2003 | 0.00 | 0.00 | 0.29 | 0.79 | 0.88 | 0.98 | 1.00 | 1.00 | 1.00 | 1.00 |
| 2004 | 0.00 | 0.00 | 0.51 | 0.78 | 0.92 | 0.89 | 0.87 | 1.00 | 1.00 | 1.00 |
| 2005 | 0.00 | 0.05 | 0.66 | 0.90 | 0.93 | 0.98 | 0.92 | 1.00 | 1.00 | 1.00 |
| 2006 | 0.00 | 0.04 | 0.59 | 0.80 | 0.99 | 0.99 | 1.00 | 1.00 | 1.00 | 1.00 |
| 2007 | 0.00 | 0.00 | 0.47 | 0.78 | 0.91 | 0.99 | 0.97 | 1.00 | 1.00 | 1.00 |
| 2008 | 0.00 | 0.10 | 0.78 | 0.91 | 0.90 | 0.95 | 1.00 | 1.00 | 1.00 | 1.00 |
| 2009 | 0.00 | 0.09 | 0.61 | 0.81 | 0.96 | 0.94 | 0.96 | 1.00 | 1.00 | 1.00 |
| 2010 | 0.00 | 0.08 | 0.61 | 0.77 | 0.94 | 0.97 | 1.00 | 1.00 | 1.00 | 1.00 |
| 2011 | 0.00 | 0.06 | 0.51 | 0.69 | 0.84 | 0.93 | 0.98 | 1.00 | 1.00 | 1.00 |
| 2012 | 0.00 | 0.00 | 0.63 | 0.85 | 0.94 | 0.97 | 1.00 | 1.00 | 1.00 | 0.83 |
| 2013 | 0.00 | 0.24 | 0.82 | 0.95 | 0.98 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| 2014 | 0.00 | 0.24 | 0.73 | 0.98 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| 2015 | 0.00 | 0.28 | 0.48 | 0.70 | 0.95 | 0.97 | 1.00 | 1.00 | 1.00 | 1.00 |

Table 4.2.9. Faroe Plateau cod (subdivision 5.b.1). Summer survey tuning series (number of individuals per 200 stations) and spring survey tuning series (number of individuals per $\mathbf{1 0 0}$ stations) used as tuning series in the XSA model.

| FAROE PLATEAU <br> vised.TXT | COD ( | SUBDIVISION 5.B.1) |  |  | Surveys_re- |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 102 |  |  |  |  |  |  |
| SUMMER SURVEY |  |  |  |  |  |  |
| 19962015 |  |  |  |  |  |  |
| 110.60 .7 |  |  |  |  |  |  |
| 28 |  |  |  |  |  |  |
| 200707 | 6576.5 | 3705.1 | 1298.1 | 701.5 | 233.1 | 48.5 |
| 200512.7 | 1500.7 | 6754.6 | 1466.6 | 178.4 | 137.8 | 30.1 |
| 200524.9 | 505.1 | 979.4 | 3675.2 | 902.6 | 50 | 37 |
| 200373.3 | 1256.8 | 753.1 | 675.3 | 1422.5 | 238 | 40.4 |
| 2001364.1 | 1153.3 | 673.8 | 309.6 | 436.9 | 600.8 | 35.4 |
| 2003422.1 | 2458.7 | 1537.8 | 415.9 | 234.8 | 283 | 242 |
| 2002326 | 5562.9 | 1816.5 | 810.8 | 147.7 | 83.3 | 69.5 |
| 200354 | 1038.8 | 2209.2 | 565.9 | 123.4 | 17.6 | 11.9 |
| 200437 | 839.9 | 1080.2 | 1550.2 | 344.2 | 80.2 | 25.7 |
| 200616.5 | 735.1 | 872.1 | 1166.3 | 756 | 142.5 | 44.8 |
| 200978.4 | 684.2 | 349.3 | 312 | 256.6 | 123 | 28.2 |
| 200234.1 | 448.7 | 314.2 | 179.7 | 134.5 | 75.9 | 30.9 |
| 20068.8 | 370.1 | 328 | 401.2 | 160.1 | 52.4 | 27.5 |
| 200428.2 | 1980.6 | 817.7 | 551.4 | 393.1 | 132.1 | 47.8 |
| 2001239.3 | 1543.9 | 1012 | 363.4 | 243.6 | 148.9 | 41.5 |
| 200301.7 | 1373.6 | 1084.2 | 380.1 | 160.6 | 104.6 | 37.4 |
| 20022.1 | 230.8 | 1081.8 | 511.7 | 88.4 | 35.8 | 19.5 |
| 200101.7 | 205.9 | 209.3 | 888.4 | 542.5 | 104.2 | 43.9 |
| 200642.3 | 861.2 | 357.6 | 358.2 | 401.5 | 124.3 | 36.6 |
| 200235.3 | 2230.4 | 1696.1 | 414.7 | 363.4 | 242.3 | 67.2 |


| SPRING SURVEY (shifted back to december) |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{array}{lllll}1 & 1 & 0.9 & 1.0\end{array}$ |  |  |  |  |  |  |
| 18 |  |  |  |  |  |  |
| 100 | 612.5 | 336.9 | 912.8 | 508.5 | 129.7 | 187.2 |
| 28.6 |  |  |  |  |  |  |
| 100 | 623.2 | 845.7 | 1528.4 | 1525.2 | 1191.4 | 285.6 |
| 350.8 48.9 |  |  |  |  |  |  |
| 100 | 215.5 | 4043.9 | 3984.4 | 1892.1 | 1372 | 420.8 |
| 82.8169 .7 |  |  |  |  |  |  |
| 100 | 72.5 | 834.4 | 5398.3 | 2359.5 | 333.9 | 227 |
| 58.8 5.3 |  |  |  |  |  |  |
| 100 | 69.7 | 425.2 | 1572.1 | 4919.3 | 1136 | 82.3 |
| $40.7 \quad 35.2$ |  |  |  |  |  |  |
| 100 | 704.7 | 674.9 | 991.3 | 1225.2 | 2079.2 | 252.1 |
| 25.213 .4 |  |  |  |  |  |  |
| 100 | 316 | 1432.4 | 746.1 | 441 | 506.7 | 836.7 |
| 63.8 3.1 |  |  |  |  |  |  |
| 100 | 938.4 | 2387.8 | 1993.8 | 456.2 | 324.4 | 578.6 |
| 128.6 3.9 |  |  |  |  |  |  |
| 100 | 383 | 4564.1 | 2892.1 | 1579.7 | 331.9 | 231.8 |
| $178.9 \quad 131.9$ |  |  |  |  |  |  |
| 100 | 90.2 | 719 | 3915 | 1260.4 | 528.7 | 67.4 |
| $51.7 \quad 39.7$ |  |  |  |  |  |  |
| 100 | 609.5 | 575.8 | 844.6 | 1175.1 | 292.9 | 66 |
| 22.2 |  |  |  |  |  |  |
| 100 | 383.1 | 438.2 | 1151.7 | 1440.2 | 844.5 | 140.6 |
| 14 3.8 |  |  |  |  |  |  |
| 100 | 167.5 | 156.7 | 177.3 | 360.1 | 292 | 95 |
| 15.5 4 |  |  |  |  |  |  |
| 100 | 41.1 | 270.9 | 286.6 | 155.2 | 170.4 | 105.1 |
| 37.814 .4 |  |  |  |  |  |  |
| 100 | 176.6 | 474.5 | 851.9 | 479.2 | 151.5 | 83.9 |
| 39.413 .3 |  |  |  |  |  |  |
| 100 | 307.8 | 475.5 | 977.7 | 1159.1 | 427.3 | 73.7 |
| $31.6 \quad 24.9$ |  |  |  |  |  |  |
| 100 | 697.6 | 1318.8 | 745.6 | 538.1 | 381 | 98.9 |
| $41 \quad 17.2$ |  |  |  |  |  |  |
| 100 | 148.4 | 1319 | 1240.3 | 562.4 | 300.2 | 237.8 |
| 85.221 .9 |  |  |  |  |  |  |
| 100 | 41.1 | 273.8 | 1303.8 | 326.7 | 73.6 | 27 |
| 23.7 |  |  |  |  |  |  |
| 100 | 68 | 377.6 | 1699.8 | 2053.2 | 295.6 | 32.6 |
| 22.417 .7 |  |  |  |  |  |  |
| 100 | 130.9 | 113.4 | 159.6 | 419.7 | 333 | 74.8 |
| $22 \quad 13.6$ |  |  |  |  |  |  |
| 100 | 22.4 | 533.3 | 225.6 | 193.9 | 305.2 | 138.9 |
| 32.6 | 8 |  |  |  |  |  |
| 100 | 81.7 | 280.1 | 697.3 | 151.8 | 73.4 | 77.3 |
| 27.2 7.7 |  |  |  |  |  |  |

Table 4.2.10. Faroe Plateau cod (subdivision 5.b.1). Pairtrawler abundance index (number of individuals per 1000 fishing hours). This series was not used in the tuning of the XSA. The season is June-December. The otoliths are selected from deep (> $\mathbf{1 5 0} \mathbf{~ m}$ ) locations.

| Year \age | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1989 | 1200 | 1638 | 1783 | 1381 | 928 | 719 | 297 | 194 |
| 1990 | 116 | 2856 | 2057 | 834 | 465 | 419 | 200 | 0 |
| 1991 | 8 | 148 | 1401 | 869 | 329 | 225 | 65 | 93 |
| 1992 | 84 | 487 | 696 | 1234 | 760 | 353 | 129 | 62 |
| 1993 | 51 | 1081 | 2192 | 746 | 1062 | 398 | 67 | 107 |
| 1994 | 1314 | 2129 | 1457 | 2208 | 697 | 1241 | 461 | 53 |
| 1995 | 577 | 3645 | 5178 | 4199 | 2769 | 543 | 539 | 106 |
| 1996 | 242 | 10608 | 16683 | 7985 | 4410 | 194 | 0 | 723 |
| 1997 | 28 | 674 | 6038 | 9375 | 2413 | 944 | 113 | 0 |
| 1998 | 80 | 731 | 1805 | 5941 | 4904 | 801 | 286 | 0 |
| 1999 | 444 | 2082 | 1933 | 3008 | 5136 | 2220 | 218 | 4 |
| 2000 | 3478 | 3956 | 1737 | 956 | 1003 | 1694 | 382 | 0 |
| 2001 | 3385 | 6700 | 3009 | 555 | 415 | 797 | 862 | 25 |
| 2002 | 571 | 6409 | 5019 | 1235 | 432 | 400 | 41 | 228 |
| 2003 | 63 | 1341 | 4450 | 3630 | 870 | 270 | 152 | 145 |
| 2004 | 23 | 0 | 278 | 2534 | 2831 | 1733 | 274 | 184 |
| 2005 | 42 | 399 | 655 | 1766 | 2171 | 860 | 148 | 70 |
| 2006 | 93 | 135 | 699 | 755 | 1580 | 612 | 787 | 71 |
| 2007 | 64 | 916 | 1767 | 1392 | 802 | 656 | 206 | 46 |
| 2008 | 54 | 295 | 418 | 573 | 387 | 456 | 487 | 182 |
| 2009 | 11 | 734 | 801 | 756 | 448 | 247 | 147 | 105 |
| 2010 | 1578 | 2917 | 1787 | 543 | 603 | 190 | 0 | 81 |
| 2011 | 22 | 1487 | 4078 | 1967 | 622 | 441 | 95 | 25 |
| 2012 | 0 | 95 | 1531 | 1789 | 950 | 223 | 40 | 107 |
| 2013 | 35 | 102 | 761 | 1583 | 670 | 103 | 57 | 36 |
| 2014 | 292 | 1631 | 1006 | 1690 | 1812 | 477 | 94 | 101 |
| 2015 | 43 | 967 | 1943 | 1019 | 1190 | 1086 | 320 | 96 |

Table 4.2.11. Faroe Plateau cod (subdivision 5.b.1). Longliner abundance index (number of individuals per 100000 hooks). This series was not used in the tuning of the XSA. The age composition was obtained from all longliners > 100 GRT. The area was restricted to the area west of Faroe Islands at depths between 100 and 200 m .

| Year \AGE | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1993 | 405 | 2610 | 9306 | 3330 | 806 | 2754 | 847 | 258 |
| 1994 | 101 | 8105 | 14105 | 7863 | 4659 | 962 | 1187 | 71 |
| 1995 | 0 | 15249 | 23062 | 2895 | 2505 | 1568 | 708 | 1073 |
| 1996 | 0 | 2269 | 18658 | 13265 | 4153 | 8435 | 4513 | 1147 |
| 1997 | 0 | 1738 | 5837 | 26368 | 18089 | 2805 | 2807 | 402 |
| 1998 | 1892 | 4490 | 2025 | 2565 | 11738 | 2732 | 131 | 19 |
| 1999 | 849 | 10968 | 3811 | 985 | 1891 | 3759 | 548 | 109 |
| 2000 | 2695 | 10983 | 6710 | 998 | 780 | 1473 | 2136 | 109 |
| 2001 | 287 | 12999 | 7409 | 2660 | 515 | 1135 | 1808 | 2545 |
| 2002 | 105 | 6862 | 20902 | 10819 | 7759 | 1561 | 1945 | 1265 |
| 2003 | 16 | 2099 | 6057 | 15910 | 7778 | 1830 | 708 | 650 |
| 2004 | 59 | 510 | 1773 | 2438 | 3214 | 1059 | 293 | 71 |
| 2005 | 297 | 2169 | 1543 | 2313 | 2327 | 1360 | 170 | 13 |
| 2006 | 151 | 5813 | 5319 | 674 | 2205 | 2352 | 1148 | 56 |
| 2007 | 274 | 3578 | 6383 | 2778 | 1927 | 1159 | 1118 | 134 |
| 2008 | 1270 | 2243 | 4449 | 4773 | 2564 | 1133 | 816 | 716 |
| 2009 | 294 | 2670 | 15107 | 6308 | 3028 | 2491 | 683 | 132 |
| 2010 | 23 | 20287 | 16914 | 8733 | 2595 | 4780 | 1878 | 864 |
| 2011 | 160 | 2817 | 28218 | 14391 | 4295 | 2207 | 1252 | 195 |
| 2012 | 0 | 1833 | 9562 | 8309 | 2364 | 1296 | 403 | 197 |
| 2013 | 0 | 52 | 209 | 2887 | 5132 | 2654 | 1222 | 359 |
| 2014 | 93 | 5898 | 9602 | 4695 | 4398 | 3475 | 1289 | 116 |
| 2015 | 0 | 1260 | 10417 | 8202 | 3167 | 3342 | 2428 | 414 |

Table 4.2.12. Longliner abundance index (number of individuals per day) for longliners < 25 GRT operating mainly near shore. This series was not used in the tuning of the XSA. The age composition was obtained from all longliners.

| YeAR\AG |  | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1983 | 0.9 |  | 7.5 | 4.7 | 3.8 | 1.6 | 0.9 | 0.5 | 0.2 |
| 1984 | 0.0 |  | 33.3 | 32.1 | 13.2 | 5.8 | 6.3 | 1.0 | 0.7 |
| 1985 | 0.0 |  | 3.7 | 50.1 | 35.0 | 25.3 | 14.1 | 19.6 | 5.8 |
| 1986 | 0.0 |  | 5.6 | 41.6 | 24.0 | 15.3 | 6.8 | 6.2 | 2.2 |
| 1987 | 0.0 |  | 6.8 | 11.3 | 16.6 | 27.5 | 12.4 | 5.3 | 0.9 |
| 1988 | 0.0 |  | 3.1 | 6.4 | 13.0 | 8.5 | 19.1 | 6.5 | 2.6 |
| 1989 | 0.1 |  | 43.7 | 21.3 | 20.5 | 13.9 | 7.5 | 16.1 | 2.2 |
| 1990 | 0.0 |  | 7.9 | 40.3 | 8.6 | 12.2 | 6.5 | 7.7 | 4.2 |
| 1991 | 0.0 |  | 0.0 | 5.2 | 27.0 | 8.7 | 3.9 | 2.4 | 0.7 |
| 1992 | 0.0 |  | 6.2 | 17.1 | 6.9 | 3.9 | 3.6 | 1.8 | 1.4 |
| 1993 | 0.4 |  | 4.6 | 19.2 | 7.3 | 1.4 | 1.3 | 0.3 | 1.3 |
| 1994 | 0.1 |  | 14.9 | 18.4 | 15.4 | 6.6 | 2.1 | 2.6 | 0.5 |
| 1995 | 0.0 |  | 53.6 | 47.8 | 12.2 | 8.4 | 5.1 | 2.0 | 3.1 |
| 1996 | 0.0 |  | 5.9 | 76.2 | 52.1 | 13.1 | 28.8 | 14.3 | 4.2 |
| 1997 | 0.0 |  | 4.6 | 16.6 | 71.8 | 54.5 | 7.9 | 7.6 | 0.9 |
| 1998 | 5.8 |  | 12.1 | 5.6 | 8.2 | 33.1 | 9.9 | 0.4 | 0.4 |
| 1999 | 0.3 |  | 29.2 | 10.0 | 4.7 | 7.0 | 15.9 | 2.5 | 0.1 |
| 2000 | 9.6 |  | 40.4 | 23.5 | 1.3 | 1.3 | 2.4 | 4.2 | 0.5 |
| 2001 | 0.6 |  | 96.6 | 48.7 | 17.1 | 3.0 | 5.7 | 12.6 | 12.9 |
| 2002 | 0.1 |  | 47.6 | 97.2 | 43.4 | 30.0 | 7.3 | 11.5 | 6.8 |
| 2003 | 0.0 |  | 17.5 | 37.4 | 106.4 | 59.1 | 12.9 | 4.1 | 1.5 |
| 2004 | 0.0 |  | 7.0 | 21.5 | 21.0 | 31.1 | 8.2 | 0.3 | 0.0 |
| 2005 | 0.6 |  | 14.7 | 20.5 | 18.5 | 32.9 | 15.6 | 1.5 | 0.0 |
| 2006 | 2.0 |  | 58.7 | 47.0 | 9.1 | 10.6 | 13.6 | 4.1 | 0.4 |
| 2007 | 0.2 |  | 11.2 | 23.2 | 8.9 | 4.2 | 4.9 | 3.5 | 0.6 |
| 2008 | 0.3 |  | 3.4 | 16.2 | 21.1 | 14.4 | 3.3 | 1.5 | 2.1 |
| 2009 | 3.1 |  | 33.3 | 154.6 | 57.5 | 33.9 | 23.5 | 9.6 | 5.9 |
| 2010 | 2.6 |  | 135.7 | 147.1 | 62.4 | 27.3 | 28.5 | 8.5 | 1.8 |
| 2011 | 0.0 |  | 19.7 | 156.5 | 65.0 | 25.2 | 15.6 | 8.5 | 1.9 |
| 2012 | 0.3 |  | 4.6 | 39.3 | 59.0 | 15.1 | 5.2 | 2.6 | 1.3 |
| 2013 | 1.2 |  | 16.6 | 23.8 | 63.6 | 58.0 | 7.8 | 2.9 | 0.0 |
| 2014 | 2.1 |  | 103.4 | 102.0 | 46.9 | 27.3 | 17.1 | 1.4 | 0.0 |
| 2015 | 0.9 |  | 25.4 | 148.6 | 65.3 | 23.0 | 17.9 | 10.7 | 0.7 |

Table 4.6.1. Faroe Plateau cod (subdivision 5.b.1). The XSA-run.

```
Lowestoft VPA Version 3.1
    12/04/2016 8:57
Extended Survivors Analysis
COD FAROE PLATEAU (ICES SUBDIVISION 5.b.1) COD_ind_Surveys_re-
vised
cpue data from file Surveys_revised_1replacedvalue.TXT
Catch data for 57 years. 1959 to 2015. Ages 1 to 10.
    Fleet, First, Last, First, Last, Alpha, Beta
SUMMER SURVEY ', year, year, age , age . 1996, 2015, 2, 8, .600, . 700
SPRING SURVEY (shift, 1993, 2015, 1, 8, .900, 1.000
Time-series weights :
    Tapered time weighting not applied
Catchability analysis :
    Catchability independent of stock size for all ages
    Catchability independent of age for ages >= 6
Terminal population estimation :
```

    Survivor estimates shrunk towards the mean F
    of the final 5 years or the 5 oldest ages.
    S.E. of the mean to which the estimates are shrunk \(=2.000\)
    Minimum standard error for population
    estimates derived from each fleet \(=.300\)
    Prior weighting not applied
    Tuning converged after 29 iterations
Regression weights
, $1.000,1.000,1.000,1.000,1.000,1.000,1.000,1.000,1.000,1.000$
Fishing mortalities
Age, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015

| 1, | .000, | .000, | .000, | .000, | .000, | .000, | .000, | .000, | .000, | .000 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2, | .181, | .118, | .050, | .125, | .231, | .088, | .029, | .021, | .057, | .075 |
| 3, | .326, | .313, | .261, | .687, | .474, | .435, | .195, | .137, | .284, | .215 |
| 4, | .352, | .371, | .337, | .531, | .614, | .597, | .482, | .186, | .350, | .518 |
| 5, | .601, | .426, | .396, | .489, | .627, | .578, | .595, | .400, | .469, | .472 |
| 6, | .808, | .577, | .486, | .524, | .914, | .558, | .741, | .376, | .443, | .533 |
| 7, | .946, | .661, | .730, | .426, | .706, | .650, | .655, | .303, | .320, | .562 |
| 8, | 1.004, | .675, | 1.204, | .616, | .585, | .434, | .946, | .336, | .169, | .290 |
| 9, | .292, | .811, | 1.562, | 1.542, | .978, | .383, | .403, | .542, | .193, | .461 |

XSA population numbers (Thousands)

| AGE |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 8, | 9, 1' | 2, | 3 , | , | 5, | 6, | , |
| 2006 | 6.14 E | 39 E | 36 E | 75E | 62E | 60E |  |
| $6.02 \mathrm{E}+02,1.33 \mathrm{E}+02,4.36 \mathrm{E}+01$, |  |  |  |  |  |  |  |
| 2007 | 7.90E+03, 5.03E+03, |  |  |  |  |  |  |
| 5.83E+02, | $1.91 \mathrm{E}+$ | E+ |  |  |  |  |  |

```
2008, 1.01E+04, 6.46E+03, 3.66E+03, 3.02E+03, 1.45E+03, 5.37E+02,
3.35E+02, 2.46E+02, 7.97E+01,
2009, 1.38E+04, 8.24E+03, 5.03E+03, 2.31E+03, 1.77E+03, 8.02E+02,
2.71E+02, 1.32E+02, 6.05E+01,
    2010, 5.24E+03, 1.13E+04, 5.95E+03, 2.07E+03, 1.11E+03, 8.88E+02,
3.89E+02, 1.45E+02, 5.84E+01,
2011, 2.30E+03, 4.29E+03, 7.34E+03, 3.03E+03, 9.19E+02, 4.86E+02,
2.91E+02, 1.57E+02, 6.60E+01,
    2012, 3.53E+03, 1.88E+03, 3.22E+03, 3.89E+03, 1.37E+03, 4.22E+02,
2.28E+02, 1.25E+02, 8.34E+01,
2013, 9.35E+03, 2.89E+03, 1.50E+03, 2.17E+03, 1.97E+03, 6.17E+02,
1.65E+02, 9.68E+01, 3.96E+01,
    2014, 2.92E+03, 7.65E+03, 2.32E+03, 1.07E+03, 1.47E+03, 1.08E+03,
3.47E+02, 9.95E+01, 5.66E+01,
    2015, 4.12E+03, 2.39E+03, 5.92E+03, 1.43E+03, 6.17E+02, 7.55E+02,
    5.68E+02, 2.06E+02, 6.88E+01,
```

    Estimated population abundance at 1st Jan 2016
    \(0.00 \mathrm{E}+00,3.37 \mathrm{E}+03,1.81 \mathrm{E}+03,3.91 \mathrm{E}+03,6.97 \mathrm{E}+02,3.15 \mathrm{E}+02,3.63 \mathrm{E}+02\),
    $2.65 \mathrm{E}+02,1.26 \mathrm{E}+02$,

Taper weighted geometric mean of the VPA populations:
$1.39 \mathrm{E}+04,1.16 \mathrm{E}+04,8.91 \mathrm{E}+03,5.41 \mathrm{E}+03,2.99 \mathrm{E}+03,1.48 \mathrm{E}+03,6.66 \mathrm{E}+02$, $2.70 \mathrm{E}+02,1.08 \mathrm{E}+02$,

Standard error of the weighted Log(VPA populations) :
.7107, .7233, . $7048, \quad .6634, \quad .6680, \quad .6456, \quad .6312, \quad .6644$,

Log catchability residuals.

Fleet : SUMMER SURVEY

| Age | , | 1996, | 1997, | 1998, | 1999, | 2000, | 2001, | 2002, | 2003, | 2004, | 2005 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 |  | No dat | for | S fle | at t | s age |  |  |  |  |  |
| 2 | , | -.19, | .17, | . 32 , | -. 90, | .11, | . 64, | 1.10, | -. 05, | . 64, | . 52 |
| 3 | , | . 06 , | -. 30, | -. 68, | . 44, | -.49, | . 00 , | . 54, | -. 40, | . 01 , | . 38 |
| 4 |  | . 09 , | . 20 , | -. 72, | -. 24 , | -. 04 , | . 00 , | -.01, | . 02 , | -. 27 , | . 16 |
| 5 |  | . 59, | -. 15, | . 14, | -.79, | -.87, | -. 19, | . 04 , | -. 40, | . 38, | . 23 |
| 6 |  | . 08, | -. 26 , | . 49, | . 03, | -. 73, | -. 67, | -. 42, | -. 77, | . 21, | . 62 |
| 7 |  | . 21 , | -. 11, | -. 44 , | . 46 , | -. 03, | -. 40 , | -. 49, | -1.44, | . 07 , | . 44 |
| 8 |  | -. 20, | -. 34, | . 08 , | . 43, | -. 26 , | -. 10, | -. 55, | -1.13, | . 16, | . 49 |


| Age | , | 2006, | 2007, | 2008, | 2009, | 2010, | 2011, | 2012, | 2013, | 2014, | 2015 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 |  | No dat | for | s fle | at | s age |  |  |  |  |  |
| 2 | , | . 80, | -. 28 , | -1.80, | -.17, | . 65, | . 11, | -1.72, | -. 63, | . 27 , | . 44 |
| 3 | , | -. 10, | -. 68, | -. 58, | 1.05, | . 50 , | . 15 , | -. 97 , | -. 36 , | . 73 , | . 70 |
| 4 | , | -. 25, | -. 74 , | -. 88 , | . 43, | . 81, | . 48, | . 16, | -1.09, | . 26 , | 1.63 |
| 5 | , | -. 34, | -. 53, | -.11, | . 07 , | . 21 , | . 41, | . 32 , | . 38 , | -. 19, | . 82 |
| 6 |  | -. 42, | -. 43, | -.01, | . 51, | . 18, | . 14, | -. 20, | 1.00, | . 18, | . 50 |
| 7 |  | -.09, | -. 73, | -. 50, | . 44 , | . 38 , | . 28 , | -. 54, | . 62 , | . 06 , | . 39 |
| 8 |  | -.02, | -. 50, | -. 53, | . 26 , | . 01 , | -. 27 , | -. 36 , | . 31 , | -.01, | -. 05 |

Mean log catchability and standard error of ages with catchability independent of year class strength and constant w.r.t. time

| Age, | 2, | 3, | 4, | 5, | 6, | 7, |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 8 Mean Log q, | -7.8746, | -6.7078, | -6.2936, | -6.0845, | -6.0486, | -6.0486, |
| -6.0486, | .7723, | .5560, | .6124, | .4451, | .4861, | .5222, |


#### Abstract

Ages with $q$ independent of year class strength and constant w.r.t. time.




Fleet : SPRING SURVEY (shift


| Age | , | 2006, | 2007, | 2008, | 2009, | 2010, | 2011, | 2012, | 2013, | 2014, | 2015 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 |  | -1.09, | . 12 , | . 43, | . 94, | . 36 , | -. 10, | -.03, | -. 35, | -.95, | . 00 |
| 2 | , | -. 66, | . 22 , | -.09, | . 76 , | . 54, | -. 20, | . 89, | -. 75, | -. 14, | 40 |
| 3 | , | -.83, | . 10, | . 51, | . 33 , | . 47, | . 27 , | 1.13, | -. 53, | -. 48, | -. 35 |
| 4 | , | -. 79, | -.03, | . 66 , | . 35 , | . 58, | -. 36, | 1.12, | -. 17, | -. 08, | . 45 |
| 5 |  | -. 36 , | -. 16 , | . 47 , | . 25 , | . 61 , | -. 65, | . 36 , | -. 07, | . 19, | -. 36 |
| 6 |  | -. 39, | -. 05 , | . 04 , | -.03, | 1.12, | -. 79 , | -. 29 , | -. 19, | -. 06 , | -. 20 |
| 7 |  | -. 30, | -. 50, | -. 10, | . 09 , | . 72 , | -. 33, | -.13, | -.16, | -. 49, | -. 94 |
| 8 |  | 30, | -. 46 , | 42, | 11, | 24 | 1.25, | 51, | -. 08, | -. 79 , | 1.4 |

Mean log catchability and standard error of ages with catchability independent of year class strength and constant w.r.t. time

| Age, | 1, | 2, | 3, | 4, | 5, | 6, |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: |

Regression statistics :

Ages with $q$ independent of year class strength and constant w.r.t. time.
Age, Slope, t-value, Intercept, RSquare, No Pts, Reg s.e, Mean $Q$

| 1, | 1.00, | -.024, | 8.33, | .57, | 23, | .72, | -8.34, |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2, | 1.04, | -.221, | 6.81, | .65, | 23, | .60, | -6.89, |
| 3, | .89, | .833, | 6.29, | .75, | 23, | .44, | -6.00, |
| 4, | .91, | .756, | 5.95, | .77, | 23, | .42, | -5.71, |
| 5, | .90, | .858, | 5.93, | .79, | 23, | .38, | -5.74, |
| 6, | .89, | .776, | 6.10, | .71, | 23, | .41, | -5.98, |


| 7, | .97, | .199, | 6.18, | .75, | 23, | .39, | -6.18, |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 8, | .64, | 1.579, | 6.03, | .48, | 23, | .72, | -6.47, |

Terminal year survivor and $F$ summaries :
Age 1 Catchability constant w.r.t. time and dependent on age
Year class = 2014

| Fleet, Estimated | Estimated, | Int, | Ext, | Var, |  | Scaled, |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| , | Survivors, | s.e, | s.e, | Ratio, | , | Weights |
| F |  |  |  |  |  |  |
| $\begin{aligned} & \text { SUMMER SURVEY , } \\ & .000 \end{aligned}$ | 1., | . 000 , | . 000, | . 00 , | 0 , | . 000 , |
| $\begin{aligned} & \text { SPRING SURVEY (shift, } \\ & .000 \end{aligned}$ | 3374., | . 717, | . 000 , | . 00 , | 1, | 1.000, |
| F shrinkage mean , $.000$ | 0., | 2.00, , , |  |  |  | . 000, |
| Weighted prediction : |  |  |  |  |  |  |
| Survivors, Int, at end of year, s.e, 3374., .72, | Ext, s.e, .00, | $\begin{array}{ll} \text { N, } & \text { Var, } \\ \text { ', } & \text { Ratio, } \\ \text { 1, } & .000, \end{array}$ | F $.000$ |  |  |  |

Age 2 Catchability constant w.r.t. time and dependent on age

Year class $=2013$

| Fleet, Estimated | Estimated, | Int, | Ext, | Var, | N, | Scaled, |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| , | Survivors, | S.e, | S.e, | Ratio, | , | Weights, |
| F |  |  |  |  |  |  |
| SUMMER SURVEY $.049$ | 2810., | . 791 , | . 000 , | . 00 , | 1, | . 236 , |
| $\begin{aligned} & \text { SPRING SURVEY (shift, } \\ & .085 \end{aligned}$ | 1586., | . 451, | . 659 , | 1.46, | 2, | . 725 , |
| F shrinkage mean , | 1576., | 2.00, |  |  |  | . 040 , |

Weighted prediction :

| Survivors, | Int, | Ext, | N, | Var, | F |
| :---: | :---: | :---: | :---: | :---: | :---: |
| at end of year, | s.e, | s.e, | , | Ratio, |  |
| $1815 .$, | .38, | .35, | 4, | .917, | .075 |

Age 3 Catchability constant w.r.t. time and dependent on age
Year class $=2012$



Age 5 Catchability constant w.r.t. time and dependent on age
Year class $=2010$

| Fleet, Estimated | Estimated, | Int, | Ext, | Var, | N, | Scaled, |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| , | Survivors, | s.e, | s.e, | Ratio, | , | Weights, |
| F |  |  |  |  |  |  |
| $\begin{aligned} & \text { SUMMER SURVEY } \\ & .393 \end{aligned}$ | 394. | . 296 , | . 459, | 1.55, | 4, | . 395, |
| $\begin{aligned} & \text { SPRING SURVEY (shift, } \\ & .529 \end{aligned}$ | 273., | . 236, | . 212, | . 90 , | 5, | . 588, |
| F shrinkage mean | 267., | 2.00, |  |  |  | . 017 , |

Weighted prediction :

| Survivors, | Int, | Ext, | N, | Var, | F |
| :--- | :--- | :--- | :--- | :--- | :--- |
| at end of year, | s.e, | s.e, | , | Ratio, |  |
| $315 .$, | .18, | .21, | $10^{\prime}$, | 1.127, | .472 |

Age 6 Catchability constant w.r.t. time and dependent on age

Year class $=2009$


Age 7 Catchability constant w.r.t. time and age (fixed at the value for age) 6


Table 4.6.2. Faroe Plateau cod (subdivision 5.b.1). Fishing mortality-at-age from the XSA model.

| Year \age | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10+ | FBAR 3-7 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1959 | 0.1829 | 0.4853 | 0.4463 | 0.6303 | 0.3909 | 0.6060 | 0.3005 | 0.4784 | 0.4784 | 0.5117 |
| 1960 | 0.4570 | 0.6793 | 0.6222 | 0.5290 | 0.7826 | 0.6920 | 1.0328 | 0.7389 | 0.7389 | 0.6610 |
| 1961 | 0.3346 | 0.5141 | 0.4986 | 0.5737 | 0.4863 | 0.9566 | 0.8116 | 0.6715 | 0.6715 | 0.6059 |
| 1962 | 0.2701 | 0.4982 | 0.4838 | 0.7076 | 0.5569 | 0.3662 | 0.6826 | 0.5641 | 0.5641 | 0.5226 |
| 1963 | 0.2534 | 0.4138 | 0.5172 | 0.5124 | 0.5405 | 0.4879 | 0.3269 | 0.4806 | 0.4806 | 0.4944 |
| 1964 | 0.1086 | 0.2997 | 0.4523 | 0.5229 | 0.5659 | 0.6677 | 0.3531 | 0.5164 | 0.5164 | 0.5017 |
| 1965 | 0.1209 | 0.2518 | 0.4498 | 0.5622 | 0.6604 | 0.5305 | 0.4345 | 0.5318 | 0.5318 | 0.4909 |
| 1966 | 0.0829 | 0.1969 | 0.2552 | 0.4499 | 0.5016 | 0.9680 | 0.8520 | 0.6106 | 0.6106 | 0.4743 |
| 1967 | 0.0789 | 0.2389 | 0.2687 | 0.3442 | 0.5779 | 0.5203 | 1.0438 | 0.5556 | 0.5556 | 0.3900 |
| 1968 | 0.1010 | 0.2318 | 0.3949 | 0.5339 | 0.4472 | 0.7132 | 0.3331 | 0.4882 | 0.4882 | 0.4642 |
| 1969 | 0.1099 | 0.3063 | 0.3806 | 0.4180 | 0.5709 | 0.5118 | 0.8457 | 0.5499 | 0.5499 | 0.4375 |
| 1970 | 0.0530 | 0.2081 | 0.3654 | 0.3409 | 0.3709 | 0.6559 | 0.4208 | 0.4339 | 0.4339 | 0.3882 |
| 1971 | 0.0309 | 0.1337 | 0.2225 | 0.3845 | 0.5572 | 0.4651 | 0.7528 | 0.4800 | 0.4800 | 0.3526 |
| 1972 | 0.0464 | 0.1476 | 0.2070 | 0.2497 | 0.6058 | 0.4686 | 0.2464 | 0.3578 | 0.3578 | 0.3358 |
| 1973 | 0.0657 | 0.2322 | 0.3048 | 0.2813 | 0.2526 | 0.3722 | 0.3259 | 0.3091 | 0.3091 | 0.2886 |
| 1974 | 0.081 | 0.1568 | 0.2046 | 0.2953 | 0.3797 | 0.5330 | 0.3052 | 0.3457 | 0.3457 | 0.3139 |
| 1975 | 0.0774 | 0.3193 | 0.4359 | 0.4134 | 0.4544 | 0.3504 | 0.4485 | 0.4235 | 0.4235 | 0.3947 |
| 1976 | 0.0933 | 0.1723 | 0.3665 | 0.5568 | 0.5167 | 0.7619 | 0.6429 | 0.5738 | 0.5738 | 0.4749 |
| 1977 | 0.0481 | 0.3036 | 0.4748 | 0.7532 | 0.7333 | 1.1138 | 0.7776 | 0.7783 | 0.7783 | 0.6757 |
| 1978 | 0.0588 | 0.1896 | 0.4291 | 0.4289 | 0.4850 | 0.5968 | 0.5674 | 0.5054 | 0.5054 | 0.4259 |
| 1979 | 0.0433 | 0.2623 | 0.4309 | 0.5049 | 0.4906 | 0.4480 | 0.6903 | 0.5170 | 0.5170 | 0.4273 |
| 1980 | 0.054 | 0.2391 | 0.3695 | 0.4337 | 0.5182 | 0.4119 | 0.6437 | 0.4790 | 0.4790 | 0.3945 |
| 1981 | 0.0523 | 0.2877 | 0.3409 | 0.4369 | 0.5644 | 0.6940 | 0.5015 | 0.5115 | 0.5115 | 0.4648 |
| 1982 | 0.0586 | 0.2227 | 0.3602 | 0.3887 | 0.4047 | 0.6926 | 0.5526 | 0.4834 | 0.4834 | 0.4138 |
| 1983 | 0.0991 | 0.4672 | 0.5585 | 0.6411 | 0.7835 | 1.0779 | 0.9417 | 0.8087 | 0.8087 | 0.7056 |
| 1984 | 0.1073 | 0.3712 | 0.5790 | 0.6609 | 0.4533 | 0.4761 | 0.4792 | 0.5340 | 0.5340 | 0.5081 |
| 1985 | 0.0658 | 0.3543 | 0.5075 | 0.6134 | 0.9235 | 1.1081 | 1.3203 | 0.9042 | 0.9042 | 0.7014 |
| 1986 | 0.0247 | 0.3545 | 0.6225 | 0.7030 | 0.8256 | 0.8400 | 0.5408 | 0.7131 | 0.7131 | 0.6691 |
| 1987 | 0.0291 | 0.2208 | 0.4754 | 0.4850 | 0.5555 | 0.4896 | 0.6222 | 0.5298 | 0.5298 | 0.4453 |
| 1988 | 0.0666 | 0.3531 | 0.5639 | 0.5490 | 0.7735 | 0.7980 | 0.8641 | 0.7165 | 0.7165 | 0.6075 |
| 1989 | 0.1659 | 0.4394 | 0.7614 | 0.7620 | 0.9617 | 1.0574 | 1.0994 | 0.9386 | 0.9386 | 0.7964 |
| 1990 | 0.0780 | 0.3355 | 0.6371 | 0.8016 | 0.7141 | 0.8518 | 1.1365 | 0.8369 | 0.8369 | 0.6680 |
| 1991 | 0.0324 | 0.1997 | 0.4499 | 0.5980 | 0.7462 | 0.5816 | 0.7180 | 0.6242 | 0.6242 | 0.5151 |
| 1992 | 0.0201 | 0.1001 | 0.3270 | 0.3478 | 0.6366 | 0.8918 | 0.4457 | 0.5342 | 0.5342 | 0.4607 |
| 1993 | 0.0132 | 0.1021 | 0.1869 | 0.2550 | 0.2027 | 0.4403 | 0.5790 | 0.3350 | 0.3350 | 0.2374 |
| 1994 | 0.0254 | 0.1130 | 0.1910 | 0.2503 | 0.2228 | 0.1588 | 0.3209 | 1.1015 | 1.1015 | 0.1872 |
| 1995 | 0.0698 | 0.1615 | 0.4658 | 0.2809 | 0.3620 | 0.3394 | 0.2344 | 0.7368 | 0.7368 | 0.3219 |
| 1996 | 0.0301 | 0.1916 | 0.4512 | 0.8130 | 0.9099 | 1.1481 | 0.9542 | 1.0211 | 1.0211 | 0.7028 |
| 1997 | 0.0341 | 0.1459 | 0.4082 | 0.8299 | 1.0584 | 1.4231 | 1.3855 | 1.1287 | 1.1287 | 0.7731 |
| 1998 | 0.0866 | 0.1719 | 0.2665 | 0.6381 | 1.0420 | 0.8124 | 1.2396 | 0.9235 | 0.9235 | 0.5862 |
| 1999 | 0.0989 | 0.2922 | 0.2987 | 0.3267 | 0.6857 | 1.1262 | 0.9085 | 0.6112 | 0.6112 | 0.5459 |


| YEAR $\backslash$ AGE | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{6}$ | $\mathbf{7}$ | $\mathbf{8}$ | $\mathbf{9}$ | $\mathbf{1 0 +}$ | FBAR 3- 7 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2000 | 0.1279 | 0.3268 | 0.3887 | 0.2539 | 0.3338 | 0.5659 | 0.9070 | 0.2657 | 0.2657 | 0.3738 |
| 2001 | 0.1586 | 0.3465 | 0.4580 | 0.3104 | 0.3517 | 0.7000 | 0.6738 | 0.9194 | 0.9194 | 0.4333 |
| 2002 | 0.1939 | 0.4930 | 0.6010 | 0.8261 | 0.8322 | 1.3642 | 1.2352 | 1.4999 | 1.4999 | 0.8233 |
| 2003 | 0.1347 | 0.3177 | 0.6873 | 0.8792 | 0.9433 | 0.9388 | 0.9717 | 1.8512 | 1.8512 | 0.7532 |
| 2004 | 0.0312 | 0.1864 | 0.2971 | 0.7491 | 0.9767 | 1.1465 | 1.0737 | 2.0794 | 2.0794 | 0.6712 |
| 2005 | 0.0995 | 0.2725 | 0.4053 | 0.5004 | 0.8175 | 0.8836 | 0.6153 | 1.2362 | 1.2362 | 0.5758 |
| 2006 | 0.1815 | 0.3260 | 0.3524 | 0.6008 | 0.8083 | 0.9459 | 1.0038 | 0.2921 | 0.2921 | 0.6067 |
| 2007 | 0.1179 | 0.3125 | 0.3714 | 0.4256 | 0.5770 | 0.6611 | 0.6755 | 0.8110 | 0.8110 | 0.4695 |
| 2008 | 0.0503 | 0.2611 | 0.3371 | 0.3956 | 0.4856 | 0.7299 | 1.2043 | 1.5623 | 1.5623 | 0.4419 |
| 2009 | 0.1246 | 0.6865 | 0.5315 | 0.4886 | 0.5243 | 0.4263 | 0.6160 | 1.5416 | 1.5416 | 0.5314 |
| 2010 | 0.2314 | 0.4741 | 0.6140 | 0.6268 | 0.9135 | 0.7058 | 0.5852 | 0.9782 | 0.9782 | 0.6668 |
| 2011 | 0.0882 | 0.4349 | 0.5969 | 0.5779 | 0.5580 | 0.6496 | 0.4336 | 0.3831 | 0.3831 | 0.5635 |
| 2012 | 0.0292 | 0.1954 | 0.4817 | 0.5952 | 0.7415 | 0.6551 | 0.9463 | 0.4027 | 0.4027 | 0.5338 |
| 2013 | 0.0213 | 0.1365 | 0.1861 | 0.3999 | 0.3758 | 0.3035 | 0.3360 | 0.5422 | 0.5422 | 0.2804 |
| 2014 | 0.0575 | 0.2839 | 0.3501 | 0.4690 | 0.4433 | 0.3199 | 0.1690 | 0.1931 | 0.1931 | 0.3732 |
| 2015 | 0.0749 | 0.2148 | 0.5177 | 0.4715 | 0.5328 | 0.5624 | 0.2899 | 0.4610 | 0.4610 | 0.4599 |

Table 4.6.3. Faroe Plateau cod (subdivision 5.b.1). Stock number-at-age from the XSA model.

| Year \AGe | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | TOTAL |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1959 | 17399 | 13238 | 12185 | 2634 | 4092 | 683 | 503 | 213 | 29 | 0 | 50976 |
| 1960 | 14680 | 14245 | 9027 | 6141 | 1380 | 1784 | 378 | 225 | 129 | 0 | 47989 |
| 1961 | 25227 | 12019 | 7385 | 3747 | 2699 | 666 | 668 | 155 | 66 | 0 | 52630 |
| 1962 | 24782 | 20654 | 7042 | 3616 | 1863 | 1245 | 335 | 210 | 56 | 0 | 59804 |
| 1963 | 26668 | 20290 | 12907 | 3503 | 1825 | 752 | 584 | 190 | 87 | 0 | 66807 |
| 1964 | 10100 | 21834 | 12893 | 6986 | 1710 | 895 | 358 | 294 | 112 | 0 | 55183 |
| 1965 | 22676 | 8269 | 16037 | 7823 | 3639 | 830 | 416 | 151 | 169 | 0 | 60009 |
| 1966 | 28643 | 18566 | 5999 | 10207 | 4085 | 1698 | 351 | 200 | 80 | 0 | 69829 |
| 1967 | 21475 | 23451 | 13990 | 4034 | 6475 | 2133 | 842 | 109 | 70 | 0 | 72579 |
| 1968 | 11390 | 17582 | 17744 | 9020 | 2525 | 3757 | 980 | 410 | 31 | 0 | 63439 |
| 1969 | 10514 | 9325 | 13012 | 11522 | 4976 | 1212 | 1967 | 393 | 240 | 0 | 53161 |
| 1970 | 14569 | 8608 | 6840 | 7843 | 6447 | 2682 | 561 | 965 | 138 | 0 | 48654 |
| 1971 | 26041 | 11928 | 6684 | 4548 | 4456 | 3754 | 1516 | 238 | 519 | 0 | 59683 |
| 1972 | 15356 | 21320 | 9469 | 4788 | 2981 | 2483 | 1760 | 779 | 92 | 0 | 59029 |
| 1973 | 37229 | 12573 | 16664 | 6689 | 3187 | 1901 | 1109 | 902 | 499 | 400 | 81153 |
| 1974 | 46803 | 30480 | 9639 | 10816 | 4037 | 1969 | 1209 | 626 | 533 | 342 | 106456 |
| 1975 | 22687 | 38319 | 23000 | 6747 | 7217 | 2460 | 1103 | 581 | 378 | 476 | 102968 |
| 1976 | 12208 | 18575 | 29035 | 13683 | 3572 | 3908 | 1279 | 636 | 304 | 466 | 83665 |
| 1977 | 13128 | 9995 | 13853 | 20010 | 7765 | 1676 | 1909 | 489 | 274 | 18 | 69116 |
| 1978 | 18318 | 10748 | 7799 | 8372 | 10190 | 2993 | 659 | 513 | 184 | 154 | 59931 |
| 1979 | 28804 | 14998 | 8298 | 5282 | 4463 | 5433 | 1509 | 297 | 238 | 103 | 69424 |
| 1980 | 17100 | 23582 | 11759 | 5226 | 2811 | 2206 | 2723 | 789 | 122 | 52 | 66370 |
| 1981 | 27027 | 14000 | 18286 | 7580 | 2957 | 1491 | 1076 | 1477 | 339 | 150 | 74384 |
| 1982 | 30732 | 22128 | 10878 | 11228 | 4413 | 1564 | 694 | 440 | 732 | 348 | 83159 |
| 1983 | 58342 | 25161 | 17086 | 7128 | 6412 | 2450 | 854 | 284 | 207 | 200 | 118126 |
| 1984 | 21157 | 47766 | 18656 | 8767 | 3339 | 2765 | 916 | 238 | 91 | 174 | 103870 |
| 1985 | 11616 | 17322 | 35130 | 10538 | 4023 | 1412 | 1439 | 466 | 121 | 146 | 82212 |
| 1986 | 12108 | 9511 | 13279 | 20181 | 5194 | 1784 | 459 | 389 | 102 | 81 | 63087 |
| 1987 | 10661 | 9913 | 7597 | 7627 | 8866 | 2105 | 640 | 162 | 185 | 69 | 47826 |
| 1988 | 19749 | 8729 | 7884 | 4987 | 3882 | 4469 | 989 | 321 | 71 | 53 | 51135 |
| 1989 | 4441 | 16169 | 6686 | 4535 | 2323 | 1835 | 1688 | 365 | 111 | 16 | 38170 |
| 1990 | 8132 | 3636 | 11214 | 3528 | 1734 | 888 | 574 | 480 | 99 | 50 | 30336 |
| 1991 | 13900 | 6658 | 2754 | 6565 | 1527 | 637 | 356 | 201 | 126 | 56 | 32780 |
| 1992 | 12320 | 11380 | 5277 | 1846 | 3428 | 688 | 247 | 163 | 80 | 90 | 35520 |
| 1993 | 30804 | 10087 | 9132 | 3909 | 1090 | 1982 | 298 | 83 | 85 | 96 | 57567 |
| 1994 | 52357 | 25220 | 8150 | 6751 | 2655 | 692 | 1325 | 157 | 38 | 26 | 97371 |
| 1995 | 15991 | 42867 | 20130 | 5960 | 4566 | 1692 | 453 | 926 | 93 | 102 | 92780 |
| 1996 | 8049 | 13092 | 32730 | 14024 | 3062 | 2823 | 965 | 264 | 599 | 80 | 75688 |
| 1997 | 7407 | 6590 | 10401 | 22125 | 7312 | 1112 | 930 | 251 | 83 | 192 | 56403 |
| 1998 | 17868 | 6064 | 5214 | 7359 | 12043 | 2611 | 316 | 184 | 51 | 45 | 51755 |
| 1999 | 24393 | 14629 | 4553 | 3595 | 4616 | 5209 | 754 | 115 | 44 | 19 | 57926 |


| YEAR\AGE | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{6}$ | $\mathbf{7}$ | $\mathbf{8}$ | $\mathbf{9}$ | $\mathbf{1 0 +}$ | TOTAL |
| :--- | :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 2000 | 36505 | 19972 | 10850 | 2783 | 2183 | 2726 | 2148 | 200 | 38 | 5 | 77409 |
| 2001 | 16074 | 29888 | 14388 | 6406 | 1545 | 1387 | 1598 | 999 | 66 | 11 | 72361 |
| 2002 | 7466 | 13160 | 20880 | 8331 | 3318 | 927 | 799 | 650 | 417 | 10 | 55957 |
| 2003 | 4308 | 6112 | 8875 | 10441 | 3739 | 1189 | 330 | 167 | 155 | 27 | 35344 |
| 2004 | 7182 | 3527 | 4374 | 5288 | 4300 | 1271 | 379 | 106 | 52 | 44 | 26522 |
| 2005 | 9029 | 5880 | 2799 | 2972 | 3217 | 1664 | 392 | 99 | 30 | 47 | 26129 |
| 2006 | 6143 | 7393 | 4358 | 1745 | 1623 | 1597 | 602 | 133 | 44 | 13 | 23649 |
| 2007 | 7896 | 5030 | 5048 | 2576 | 1004 | 728 | 583 | 191 | 40 | 6 | 23102 |
| 2008 | 10060 | 6465 | 3660 | 3024 | 1454 | 537 | 335 | 246 | 80 | 26 | 25887 |
| 2009 | 13806 | 8237 | 5033 | 2308 | 1767 | 802 | 271 | 132 | 60 | 23 | 32439 |
| 2010 | 5244 | 11303 | 5954 | 2074 | 1111 | 888 | 389 | 145 | 58 | 66 | 27231 |
| 2011 | 2301 | 4294 | 7343 | 3034 | 919 | 486 | 291 | 157 | 66 | 7 | 18898 |
| 2012 | 3530 | 1884 | 3218 | 3892 | 1368 | 422 | 228 | 125 | 83 | 73 | 14822 |
| 2013 | 9349 | 2890 | 1498 | 2167 | 1968 | 617 | 165 | 97 | 40 | 13 | 18804 |
| 2014 | 2918 | 7654 | 2316 | 1070 | 1473 | 1080 | 347 | 100 | 57 | 6 | 17022 |
| 2015 | 4121 | 2389 | 5917 | 1428 | 617 | 755 | 568 | 206 | 69 | 21 | 16090 |
| 2016 | 0 | 3374 | 1815 | 3908 | 697 | 315 | 363 | 265 | 126 | 46 | 10908 |

Table 4.6.4. Faroe Plateau cod (subdivision 5.b.1). Summary table from the XSA model. The re-sults from the short-term prediction are shown in bold.

| Year | Recruitment | BIomass | Bıomass | BIomass | LANDINGS | Mean F |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Age 2 | Age $2+$ | Age 3+ | SSB |  | Ages 3-7 |
|  | THOUSANDS | TONNES | TONNES | TONNES | TONNES |  |
| 1959 | 13238 | 67803 | 56550 | 48869 | 22415 | 0.5117 |
| 1960 | 14245 | 75862 | 61619 | 54447 | 32255 | 0.661 |
| 1961 | 12019 | 65428 | 52459 | 46439 | 21598 | 0.6059 |
| 1962 | 20654 | 68225 | 47568 | 43326 | 20967 | 0.5226 |
| 1963 | 20290 | 77602 | 56500 | 49054 | 22215 | 0.4944 |
| 1964 | 21834 | 84666 | 63483 | 55362 | 21078 | 0.5017 |
| 1965 | 8269 | 75043 | 67442 | 57057 | 24212 | 0.4909 |
| 1966 | 18566 | 83919 | 65724 | 60629 | 20418 | 0.4743 |
| 1967 | 23451 | 105289 | 82778 | 73934 | 23562 | 0.39 |
| 1968 | 17582 | 110433 | 94958 | 82484 | 29930 | 0.4642 |
| 1969 | 9325 | 105537 | 95372 | 83487 | 32371 | 0.4375 |
| 1970 | 8608 | 98398 | 90131 | 82035 | 24183 | 0.3882 |
| 1971 | 11928 | 78218 | 68559 | 63308 | 23010 | 0.3526 |
| 1972 | 21320 | 76439 | 62363 | 57180 | 18727 | 0.3358 |
| 1973 | 12573 | 110713 | 96756 | 83547 | 22228 | 0.2886 |
| 1974 | 30480 | 139266 | 106341 | 98434 | 24581 | 0.3139 |
| 1975 | 38319 | 153664 | 123391 | 109566 | 36775 | 0.3947 |
| 1976 | 18575 | 161260 | 143807 | 123077 | 39799 | 0.4749 |
| 1977 | 9995 | 136211 | 127520 | 112057 | 34927 | 0.6757 |
| 1978 | 10748 | 96227 | 84269 | 78497 | 26585 | 0.4259 |
| 1979 | 14998 | 85112 | 71659 | 66723 | 23112 | 0.4273 |
| 1980 | 23582 | 85038 | 63178 | 58887 | 20513 | 0.3945 |
| 1981 | 14000 | 88411 | 73287 | 63562 | 22963 | 0.4648 |
| 1982 | 22128 | 98963 | 71739 | 67033 | 21489 | 0.4138 |
| 1983 | 25161 | 123255 | 89581 | 78542 | 38133 | 0.7056 |
| 1984 | 47766 | 152158 | 95072 | 96773 | 36979 | 0.5081 |
| 1985 | 17322 | 131240 | 115566 | 84786 | 39484 | 0.7014 |
| 1986 | 9511 | 99271 | 88821 | 73693 | 34595 | 0.6691 |
| 1987 | 9913 | 78362 | 67522 | 62241 | 21391 | 0.4453 |
| 1988 | 8729 | 66177 | 56912 | 52125 | 23182 | 0.6075 |
| 1989 | 16169 | 59031 | 42701 | 38406 | 22068 | 0.7964 |
| 1990 | 3636 | 38276 | 34837 | 29270 | 13692 | 0.668 |
| 1991 | 6658 | 28679 | 23491 | 21069 | 8750 | 0.5151 |
| 1992 | 11380 | 35684 | 24430 | 20755 | 6396 | 0.4607 |
| 1993 | 10087 | 51034 | 39378 | 33068 | 6107 | 0.2374 |
| 1994 | 25220 | 83914 | 53804 | 42475 | 9046 | 0.1872 |
| 1995 | 42867 | 144645 | 92428 | 54320 | 23045 | 0.3219 |
| 1996 | 13092 | 143005 | 129704 | 85321 | 40422 | 0.7028 |
| 1997 | 6590 | 97233 | 91293 | 81714 | 34304 | 0.7731 |
| 1998 | 6064 | 66872 | 60784 | 56284 | 24005 | 0.5862 |
| 1999 | 14629 | 66269 | 50916 | 45830 | 19245 | 0.5459 |


| Year | Recruitment | Biomass | Biomass | Biomass | LANDINGS | Mean F |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Age 2 | Age $2+$ | Age 3+ | SSB |  | Ages 3-7 |
|  | THousands | TONNES | TONNES | TONNES | TONNES |  |
| 2000 | 19972 | 91995 | 63718 | 46396 | 21833 | 0.3738 |
| 2001 | 29888 | 110410 | 75622 | 59118 | 28577 | 0.4333 |
| 2002 | 13160 | 98445 | 85066 | 56006 | 38834 | 0.8233 |
| 2003 | 6112 | 60392 | 55378 | 40542 | 25167 | 0.7532 |
| 2004 | 3527 | 36140 | 32490 | 26435 | 12840 | 0.6712 |
| 2005 | 5880 | 31066 | 25273 | 22942 | 10119 | 0.5758 |
| 2006 | 7393 | 28949 | 22757 | 19879 | 9844 | 0.6067 |
| 2007 | 5030 | 26543 | 21832 | 16786 | 7511 | 0.4695 |
| 2008 | 6465 | 29423 | 21607 | 20129 | 7315 | 0.4419 |
| 2009 | 8237 | 29617 | 22981 | 19359 | 9979 | 0.5314 |
| 2010 | 11303 | 37225 | 25370 | 21047 | 12757 | 0.6668 |
| 2011 | 4294 | 29310 | 25810 | 18135 | 9692 | 0.5635 |
| 2012 | 1884 | 22838 | 20946 | 17848 | 7204 | 0.5338 |
| 2013 | 2890 | 22114 | 19196 | 19083 | 4473 | 0.2804 |
| 2014 | 7654 | 27567 | 19156 | 20087 | 5715 | 0.3732 |
| 2015 | 2389 | 28520 | 25663 | 19729 | 7394 | 0.4599 |
| 2016 | 3374 | 26625 | 25663 | 22408 | 7514 | 0.4599 |
| 2017 | 4311 | 25745 |  | 20162 | 7170 | 0.4599 |
| 2018 | 4311 | 25020 |  | 18911 |  |  |
| Average | 14736 | 79908 | 64677 | 55347 | 21832 | 0.5102 |

Table 4.6.5. Faroe Plateau cod (subdivision 5.b.1). Biomass (age $2+$, tons) from 1710-1859 based on two approaches. The left part of the table is modelled by scaled dried cod export (taking account of increasing tendency to export more fish over time) 1710-1859. The right part of the table is modelled by the same model, but fitted for the 1710-1840 period, and a separate model, a factor, is used for the 1841-1859 period. This was an attempt to take account of a possible increased dried cod export caused by better possibilities of fishers to sell their landings. The value in 1860 (taken from next table) is also shown. Missing years are modelled by linear interpolation. Year label = first row + first column.

|  | 1700 | 1750 | 1800 | 1850 | 1700 | 1750 | 1800 | 1850 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 |  | 203118 | 145689 | 163103 |  | 209334 | 153202 | 69133 |
| 1 |  | 150800 | 150618 | 168040 |  | 154170 | 158624 | 75653 |
| 2 |  | 100949 | 109427 | 175508 |  | 100590 | 113557 | 86379 |
| 3 |  | 74141 | 81679 | 181495 |  | 72481 | 83220 | 95999 |
| 4 |  | 98616 | 70210 | 205909 |  | 97678 | 70898 | 142806 |
| 5 |  | 62191 | 89050 | 236862 |  | 60147 | 91333 | 215365 |
| 6 |  | 131926 | 100897 | 210540 |  | 134388 | 104274 | 193343 |
| 7 |  | 141252 | 115479 | 184218 |  | 144056 | 120134 | 171320 |
| 8 |  | 180782 | 113116 | 157896 |  | 186010 | 117581 | 149298 |
| 9 |  | 159904 | 93431 | 131574 |  | 163392 | 96800 | 127275 |
| 10 | 142041 | 133776 | 73745 | 105252 | 139327 | 135636 | 76018 | 105252 |
| 11 | 168323 | 107648 | 54060 |  | 166755 | 107881 | 55236 |  |
| 12 | 193811 | 120502 | 34374 |  | 193421 | 121629 | 34455 |  |
| 13 | 193026 | 120502 | 14689 |  | 192735 | 121629 | 13673 |  |
| 14 | 154233 | 128892 | 67502 |  | 152771 | 130692 | 69965 |  |
| 15 | 109779 | 145077 | 90579 |  | 107070 | 148357 | 94857 |  |
| 16 | 58303 | 139000 | 111302 |  | 54676 | 141834 | 116549 |  |
| 17 | 70962 | 129309 | 113210 |  | 67616 | 131610 | 118767 |  |
| 18 | 98712 | 111100 | 130165 |  | 96031 | 112061 | 138050 |  |
| 19 | 127083 | 95355 | 173807 |  | 124525 | 95335 | 187049 |  |
| 20 | 114273 | 103794 | 183183 |  | 111543 | 104507 | 197681 |  |
| 21 | 98139 | 117533 | 151025 |  | 94963 | 119275 | 161727 |  |
| 22 | 77036 | 117533 | 128521 |  | 73459 | 119275 | 136272 |  |
| 23 | 65720 | 131271 | 121350 |  | 62238 | 134044 | 128310 |  |
| 24 | 54404 | 94983 | 119010 |  | 51018 | 95739 | 125814 |  |
| 25 | 54404 | 58694 | 113337 |  | 51018 | 57434 | 119552 |  |
| 26 | 55649 | 71518 | 102938 |  | 52294 | 70870 | 108042 |  |
| 27 | 86296 | 79834 | 116320 |  | 83531 | 79659 | 122965 |  |
| 28 | 101645 | 90404 | 124944 |  | 99323 | 90772 | 132793 |  |
| 29 | 120159 | 96467 | 136327 |  | 118226 | 97236 | 145626 |  |
| 30 | 122389 | 104086 | 150109 |  | 120593 | 105556 | 161352 |  |
| 31 | 112436 | 111704 | 161142 |  | 110278 | 113876 | 174088 |  |
| 32 | 86199 | 92367 | 169340 |  | 83857 | 93305 | 183519 |  |
| 33 | 59963 | 92367 | 171628 |  | 57435 | 93305 | 186276 |  |
| 34 | 33726 | 85472 | 157524 |  | 31014 | 86016 | 170288 |  |
| 35 | 49250 | 102178 | 153222 |  | 46434 | 103919 | 165504 |  |
| 36 | 81195 | 100998 | 154433 |  | 79333 | 102688 | 167039 |  |
| 37 | 86494 | 120264 | 159721 |  | 84577 | 123750 | 173188 |  |


|  | 1700 | 1750 | 1800 | 1850 | 1700 | 1750 | 1800 | 1850 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 38 | 79128 | 146668 | 141223 | 77256 | 152842 | 152440 |  |  |
| 39 | 61034 | 172556 | 135717 | 58429 | 181282 | 146245 |  |  |
| 40 | 50622 | 164087 | 156283 | 48317 | 172091 | 135996 |  |  |
| 41 | 54594 | 138988 | 219704 | 52530 | 144576 | 199136 |  |  |
| 42 | 18387 | 122896 | 238434 | 16411 | 126933 | 187345 |  |  |
| 43 | 103720 | 117417 | 243695 | 102334 | 121048 | 199009 |  |  |
| 44 | 83076 | 124089 | 223875 | 81115 | 128422 | 154909 |  |  |
| 45 | 83076 | 130899 | 210972 | 81115 | 136024 | 136441 |  |  |
| 46 | 88182 | 113963 | 188260 | 86580 | 117918 | 101729 |  |  |
| 47 | 186414 | 96159 | 184208 | 191549 | 98703 | 95822 |  |  |
| 48 | 193149 | 77125 | 177024 | 198624 | 77981 | 88167 |  |  |
| 49 | 237895 | 117737 | 175956 | 247009 | 122529 | 87678 |  |  |

Table 4.6.6. Faroe Plateau cod (subdivision 5.b.1). Biomass (age 2+, tons) from 1860-2015. The biomass from 1860-1905 is based on scaled cpue from Faroese and Shetland vessels. The biomass from 1906-1958 is based on scaled cpue from British steam trawlers. The results from the age-based assessment from 1959-2015 are shown for completeness. Year label = first row + first column.

|  | 1850 | 1875 | 1900 | 1925 | 1950 | 1975 | 2000 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 |  | 236420 | 143952 | 129353 | 152207 | 153664 | 91995 |
| 1 |  | 224948 | 156472 | 185574 | 124325 | 161260 | 110410 |
| 2 |  | 208758 | 151509 | 162034 | 116783 | 136211 | 98445 |
| 3 |  | 213729 | 163172 | 126611 | 116783 | 96227 | 60392 |
| 4 |  | 199256 | 145938 | 135524 | 146493 | 85112 | 36140 |
| 5 |  | 241850 | 130638 | 142608 | 149464 | 85038 | 31066 |
| 6 |  | 254217 | 125162 | 139409 | 108327 | 88411 | 28949 |
| 7 |  | 257567 | 148793 | 121354 | 112898 | 98963 | 26543 |
| 8 |  | 221818 | 108532 | 108327 | 84102 | 123255 | 29423 |
| 9 |  | 173547 | 175051 | 107870 | 67803 | 152158 | 29617 |
| 10 | 105252 | 102923 | 149669 | 91187 | 75862 | 131240 | 37225 |
| 11 | 88276 | 86780 | 175051 | 102385 | 65428 | 99271 | 29310 |
| 12 | 95349 | 72702 | 161922 | 95758 | 68225 | 78362 | 22838 |
| 13 | 127038 | 71090 | 137415 | 93244 | 77602 | 66177 | 22114 |
| 14 | 152220 | 84268 | 112908 | 143439 | 84666 | 59031 | 27567 |
| 15 | 118946 | 166257 | 122391 | 193635 | 75043 | 38276 | 28520 |
| 16 | 107629 | 253036 | 143731 | 216611 | 83919 | 28679 |  |
| 17 | 94463 | 258572 | 171332 | 188465 | 105289 | 35684 |  |
| 18 | 149274 | 187962 | 213691 | 196270 | 110433 | 51034 |  |
| 19 | 198563 | 137071 | 205685 | 210683 | 105537 | 83914 |  |
| 20 | 181645 | 195446 | 98904 | 225096 | 98398 | 144645 |  |
| 21 | 139371 | 184553 | 117284 | 239509 | 78218 | 143005 |  |
| 22 | 108056 | 155015 | 160172 | 177346 | 76439 | 97233 |  |
| 23 | 178060 | 104436 | 133039 | 122497 | 110713 | 66872 |  |
| 24 | 232567 | 133637 | 136895 | 164777 | 139266 | 66269 |  |

Table 4.7.1. Faroe Plateau cod (subdivision 5.b.1). Input to management option table.


Table 4.7.2. Faroe Plateau cod (subdivision 5.b.1). Management option table.

| MFDP VERSİN 1 |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Run: Cod_farp |  |  |  |  |  |  |
| Index file 29/4-2016 |  |  |  |  |  |  |
| Time and date: 15:12 29/04/2016 |  |  |  |  |  |  |
| Fbar age range: 3-7 |  |  |  |  |  |  |
| 2016 |  |  |  |  |  |  |
| Biomass | SSB | FMult | FBar | Landings |  |  |
| 26625 | 22408 | 1.0000 | 0.4599 | 7514 |  |  |
| 201 |  |  |  |  | 201 |  |
| Biomass | SSB | FMult | FBar | Landings | Biomass | SSB |
| 25745 | 20162 | 0.0000 | 0.0000 | 0 | 33196 | 26726 |
| . | 20162 | 0.1000 | 0.0460 | 869 | 32203 | 25774 |
| . | 20162 | 0.2000 | 0.0920 | 1700 | 31254 | 24864 |
| . | 20162 | 0.3000 | 0.1380 | 2494 | 30347 | 23995 |
| . | 20162 | 0.4000 | 0.1840 | 3254 | 29481 | 23166 |
| . | 20162 | 0.5000 | 0.2300 | 3980 | 28652 | 22374 |
| . | 20162 | 0.6000 | 0.2759 | 4676 | 27860 | 21617 |
| . | 20162 | 0.7000 | 0.3219 | 5341 | 27102 | 20894 |
| . | 20162 | 0.8000 | 0.3679 | 5978 | 26377 | 20203 |
| . | 20162 | 0.9000 | 0.4139 | 6587 | 25684 | 19542 |
| . | 20162 | 1.0000 | 0.4599 | 7170 | 25020 | 18911 |
| . | 20162 | 1.1000 | 0.5059 | 7729 | 24385 | 18307 |
| . | 20162 | 1.2000 | 0.5519 | 8265 | 23777 | 17730 |
| . | 20162 | 1.3000 | 0.5979 | 8777 | 23194 | 17178 |
| . | 20162 | 1.4000 | 0.6439 | 9269 | 22637 | 16650 |
| . | 20162 | 1.5000 | 0.6899 | 9740 | 22102 | 16144 |
| . | 20162 | 1.6000 | 0.7358 | 10192 | 21591 | 15661 |
| . | 20162 | 1.7000 | 0.7818 | 10625 | 21100 | 15198 |
| . | 20162 | 1.8000 | 0.8278 | 11040 | 20630 | 14755 |
| . | 20162 | 1.9000 | 0.8738 | 11439 | 20179 | 14330 |
| . | 20162 | 2.0000 | 0.9198 | 11821 | 19747 | 13924 |

Input units are thousands and kg -output in tonnes

Table 4.8.1. Faroe Plateau cod (subdivision 5.b.1). Input to yield-per-recruit calculations (long-term prediction).

|  | EXPL. | Weight | Prop |
| :---: | :---: | :---: | :---: |
|  | Pattern | AT AGE | MATURE |
|  |  |  |  |
|  | AVERAGE | AVERAGE | AVERAGE |
| AGE | $2002-2015$ | $1978-2015$ | $\mathbf{1 9 8 3 - 2 0 1 6}$ |
| NOT RESCALED |  |  |  |
| 2 | 0.103 | 1.044 | 0.06 |
| 3 | 0.328 | 1.571 | 0.58 |
| 4 | 0.452 | 2.296 | 0.84 |
| 5 | 0.572 | 3.097 | 0.94 |
| 6 | 0.681 | 3.903 | 0.98 |
| 7 | 0.735 | 4.999 | 0.99 |
| 8 | 0.725 | 6.254 | 1.00 |
| 9 | 0.988 | 7.820 | 1.00 |
| $10+$ | 0.988 | 9.676 | 1.00 |

Table 4.8.2. Faroe Plateau cod (subdivision 5.b.1). Output from yield-per-recruit calculations (longterm prediction).

| Reference point | F multiplier | Absolute F |
| :---: | :---: | :---: |
| $\mathrm{Fbar}^{\text {b }}$ (3-7) | 1.0000 | 0.5536 |
| $\mathrm{F}_{\text {max }}$ | 0.4576 | 0.2533 |
| $\mathrm{F}_{0.1}$ | 0.2112 | 0.1169 |
| $\mathrm{F}_{35 \%} \mathrm{SPR}$ | 0.3175 | 0.1758 |
| Flow | 0.1862 | 0.1031 |
| $\mathrm{F}_{\text {med }}$ | 0.6715 | 0.3717 |
| Fhigh | 1.6421 | 0.9091 |

### 4.19 Figures



Figure 4.2.1. Faroe Plateau cod (subdivision 5.b.1). Catch in numbers-at-age shown as catch curves.


Figure 4.2.2. Faroe Plateau cod (subdivision 5.b.1). Mean weight at age. The predicted weights are also shown.


Figure 4.2.3. Faroe Plateau cod (subdivision 5.b.1). Proportion mature at age as observed in spring groundfish survey. The predicted values are shown in grey.


Figure 4.2.4. Faroe Plateau cod (subdivision 5.b.1). Catch curves from spring groundfish survey.

Faroe Plateau cod


Figure 4.2.5. Faroe Plateau cod (subdivision 5.b.1). Stratified $\mathrm{kg} / \mathrm{hour}$ in spring and summer surveys (upper figure). The age 3+ biomass obtained from the assessment is also included as an index.

Figure 4.2.6. Faroe Plateau cod (subdivision 5.b.1). Catch curves from summer groundfish survey.


Figure 4.2.7. Faroe Plateau cod (subdivision 5.b.1). Standardized catch per unit of effort for pairtrawlers and longliners. The two surveys are shown as well.


Figure 4.2.8. Faroe Plateau cod (subdivision 5.b.1). Catch per unit of effort for small and large longliners compared with the fishable (age $3+$ ) biomass.


Figure 4.2.9. Faroe Plateau cod (subdivision 5.b.1). Catchability (cpue divided by age $3+$ biomass) for small and large longliners and pairtrawlers.

## Spring survey (shifted back to December)



Summer survey


Figure 4.6.1. Faroe Plateau cod (subdivision 5.b.1). Log catchability residuals for age 2-7 for spring (upper figure) and summer survey. The residuals for age 8 are not presented because some values were off scale. White bubbles indicate negative residuals.


Figure 4.6.2. Faroe Plateau cod (subdivision 5.b.1). Spawning-stock biomass (SSB) and recruitment (year class) vs. year (upper figure) and yield and fishing mortality vs. year. Points (white and grey) are taken from the short-term projections.


Figure 4.6.3. Faroe Plateau cod (subdivision 5.b.1). Different measures of fishing mortality: straight arithmetic average (Avg F), weighted by stock numbers (Nwtd), weighted by stock biomass (Bwtd) or weighted by catch (Cwtd).


Figure 4.6.4. Faroe Plateau cod (subdivision 5.b.1). Spawning stock - recruitment relationship. Years are shown at each data point.

Precautionary Approach Plot
Period 1959-2016


Figure 4.6.5. Faroe Plateau cod (subdivision 5.b.1). Spawning-stock biomass vs. fishing mortality.


Figure 4.6.6. Faroe Plateau cod (subdivision 5.b.1). Biomass (age 2+) obtained from the age-based assessment as well as from cpue of British trawlers and Faroe/Shetland vessels that were scaled to biomass. Prior to 1860 the export of dried cod was used as a basis to estimate the biomass also accounting for increased tendency to export dried cod during the period. The high estimates around 1850 are based on the assumption that the high values of dried cod export were due to an increased biomass alone. The lower estimates are based on the assumption that dried cod export increased, not only due to increased biomass, but also due to better possibilities to land fish during this period.


Figure 4.7.1. Faroe Plateau cod (subdivision 5.b.1). Predictions of the contribution of various year classes to the spawning-stock biomass in terminal year +1 (upper figure) and terminal year +2 (lower figure).


Figure 4.8.1. Faroe Plateau cod (subdivision 5.b.1). Yield-per-recruit and spawning-stock biomass (SSB) per recruit vs. fishing mortality (left figure). Landings and SSB versus Fbar (3-7) (right figure).


Figure 4.9.1. Faroe Plateau cod (subdivision 5.b.1). Results from the XSA retrospective analysis of fishing mortality (ages 3-7).


Figure 4.9.1. Faroe Plateau cod (subdivision 5.b.1). Results from the XSA retrospective analysis (continued). Recruitment-at-age 1 (upper figure) and at age 2.


Figure 4.9.1. Faroe Plateau cod (subdivision 5.b.1). Results from the XSA retrospective analysis (continued). Spawning-stock biomass (upper figure) and total-stock biomass.


Figure 4.9.2. Faroe Plateau cod (subdivision 5.b.1). Modelling cod recruitment in three steps. First, the catch-per-unit -effort of cod (C) for small boats operating close to land, as being indicative of the amount of cannibalistic cod. Second, the amount of cod (older than the recruiting cod) (B), as being indicative of e.g. the amount of schools to which recruiting cod can join and hide in. Third, the ratio between $B$ and $C$, as indicative of recruitment success. Fourth and fifth, a comparison with observed recruitment. Note that the model predicts that the recruitment in recent years is very poor.


Figure 4.10.1. Faroe Plateau cod (subdivision 5.b.1). Comparison between the results from the current assessment (Assm. 2016) and the assessment last year (Assm. 2015) for recruitment (upper left), fishing mortality (upper right), stock biomass (lower left) and spawning-stock biomass (lower right).

### 5.1 Stock description and management units

Haddock in Faroese Waters, i.e. ICES Subdivisions 5.b. 1 and 5.b. 2 and in the southern part of ICES Division 2.a, close to the border of Subdivision 5.b.1, are generally believed to belong to the same stock and are treated as one management unit named Faroe haddock. Haddock is distributed all over the Faroe Plateau and the Faroe Bank from shallow water down to more than 450 m . A more detailed description of haddock in Faroes waters is given in the stock annex. The spatial distribution of the haddock in the summer survey and in spring survey is shown in figure 5.9. The figure do clearly illustrate the drastic decrease in the stock biomass in recent years.

### 5.2 Scientific data

## Trends in landings and fisheries

Nominal landings of Faroe haddock increased very rapidly from only 4000 t in 1993 to 27000 t in 2003, but have declined drastically since and amounted in 2012 to only about 2600 t ; they have increased a bit to 3400 t in 2015. Most of the landings are taken from the Faroe Plateau; the 2015 landings from the Faroe Bank (Subdivision 5.b.2), where the area shallower than 200 m depths has been closed to almost all fishing since the fiscal year 2008-2009, amounted to only about 31 t (Tables 5.1 and 5.2). The cumulative landings by month are shown in Figure 5.2.

Faroese vessels have taken almost the entire catch since the late 1970s (Figure 5.1). Due to the dispute on mackerel quota share, there was no agreement on mutual fishery rights between the Faroe Islands and Norway and EU, respectively, since 2011 and therefore there was no fishery by those parties in 5.b in 2012 and 2013; in 2014 the parties happened to make an agreement again. The proportion of the Faroese landings taken by each fleet category since 1985 are shown in the annex. The longlines have taken most of the catches in recent years followed by the trawlers. This was also the case in 2015, where the share by longlines was $81 \%$ and that by trawlers $19 \%$ (Figure 5.3).

## Catch-at-age

Catch-at-age data were provided for fish taken by the Faroese fleets from 5.b. 1 and 5.b.2. The sampling intensity in 2015 is shown in Table 5.3 showing some decrease in intensity as compared to 2014. There is a need to increase the sampling level. Reasons for the inadequate sampling level are shortage of resources (people, money) but also that the total catches (and stock) are so small that it is difficult to obtain enough samples. From late 2011, a landing site has been established in Tórshavn close to the Marine Research Institute and it is the intention that technicians from the Institute will regularly be sampling the landings there; this will increase the sampling level in coming years. This has also turned out to be difficult of the above mentioned reasons but the outlook is very positive regarding raising enough money to hire a new technician to among other things do the sampling. The normal procedure has been to disaggregate samples from each fleet category by season (Jan-Apr, May-Aug and Sep-Dec) and then raise them by the corresponding catch proportions to give the annual catch-at-age in numbers for each fleet This year, all longliners were grouped into 2 fleets (larger and smaller than 100 GRT, respectively), and all trawlers were also grouped into 2 fleets
(larger and smaller than 1000 Hp , respectively). The longliner samples had to be treated by using 2 seasons only (Jan-Jun, Jul-Dec. The results are given in Table 5.3. No catch-at-age data were available from other nations (Norwegian longliners and British trawlers) and they were assumed to have the same age composition as the Faroese corresponding fleets. The most recent data were revised according to the final catch figures. The resulting total catch-at-age in numbers is given in Tables 5.4 and 5.5, and in Figure 5.4 the LN (catch-at-age in numbers) is shown since 1957.

In general the catch-at-age matrix in recent years appears consistent although from time to time some few very small year classes are disturbing this consistency, both in numbers and mean weights at age. The recent very small year classes need to be very carefully inspected when the $\mathrm{F}_{\mathrm{BAR}}$ is calculated. Also there are some problems with what ages should be included in the plus group; there are some periods where only a few fish are older than 9 years, and other periods with a quite substantial plus group $(10+)$. These problems have been addressed in former reports of this WG and will not be further dealt with here (See the 2005 NWWG report). Next year there will be a benchmark assessment of this stock, and all issues will be carefully investigated. No estimates of discards of haddock are available. However, since almost no quotas are used in the management of the fisheries on this stock, the incentive to discard in order to highgrade the catches should be low. The landings statistics is therefore regarded as being adequate for assessment purposes. The ban on discarding as stated in the law on fisheries should also - in theory - keep the discarding at a low level.

## Weight-at-age

Mean weight-at-age data are provided for the Faroese fishery (Table 5.5). Figure 5.5 shows the mean weights-at-age in the landings for age groups 2-7 since 1976. During this period, weights have shown cyclical changes. They were at a minimum in 20072009, but have increased again since then In the 3 latest years the weights have been fluctuated without a clear trend and a simple average of these years will be used in the short-term predictions (Figure 5.5). The mean weights at age in the stock are assumed equal to those in the landings.

## Maturity-at-age

Maturity-at-age data are available from the Faroese Spring Groundfish Surveys 19822016. The survey is carried out in February-March, so the maturity-at-age is determined just prior to the spawning of haddock in Faroese waters, mostly in April, and the determinations of the different maturity stages is relatively easy.
In order to reduce year-to-year effects due to possible inadequate sampling and at the same time allow for trends in the series, the routine by the WG has been to use a 3-year running average in the assessment. For the years prior to 1982, average maturity-atage from the surveys 1982-1995 was adopted (Table 5.6 and Figure 5.6).

### 5.3 Information from the fishing industry

There exists a considerable amount of data on fish size in the fishing industry. No such information was used directly in the 2016 assessment but catch per unit of effort for some selected fleets (logbook data) is used as an additional information on the status of the stock (see section 5.4.1.1).

### 5.4 Methods

This assessment is an update of the 2015 assessment, with exactly the same settings of the XSA. The only changes are minor revisions of recent landings according to revised data and corresponding revisions of the c@age input. All other input files (VPA) are the same except for the addition of the 2015data.

### 5.4.1 Tuning and estimates of fishing mortality

Commercial cpue series. Several commercial catch per unit of effort series are updated every year, but as discussed in previous reports of this WG they are not used directly for tuning of the VPA but as additional information on stock trends (for details see the stock annex). The age-aggregated cpue series for longliners and pairtrawlers are presented in Figure 5.7. In general the two series show the same trends although in some periods the two series are conflicting; this has been explained by variations in catchability of the longlines due to changes in productivity of the. Both series, however, indicate that the stock is very low. The longliner cpue's do not decrease as much as the trawler cpue's which in addition to the explanation given above may be attributed to the fact that in the management of the demersal Faroese stocks, large areas have been closed to trawling with the effect that when the haddock stock is small, the distribution of it is mainly outside the "trawl areas".

In order to illustrate stock biomass further back in time, historical cpue series from British trawlers have been used together with the 2015 assessment. The method is described in WD12, "Faroe haddock biomass 1914-56". The results are given in Table 5.17, and in section 02 of this report. The biomass of Faroe haddock was estimated back to 1914 by scaling cpue values to the biomass obtained from the stock assessment. There was an overlap between cpue values from Aberdeen trawlers 1914-1959 and the age based assessment 1957-2015 by three years (1957-1959). Cpue values for English steam trawlers from 1922 to 1976 (with gaps) confirmed that the former overlap of three years was sufficient to provide a scaling of Aberdeen trawler cpue back to 1914 (Table 5.17). The table shows that the low biomass since 2006 has been unprecedented the last century.
Fisheries independent cpue series. Two annual groundfish surveys are available, one carried out in February-March since 1982 ( 100 stations per year down to 500 m depth), and the other in August-September since 1996 (200 stations per year down to 500 m depth). Biomass estimates ( $\mathrm{kg} / \mathrm{hour}$ ) are available for both series since they were initiated (Figure 5.8). The main trends from the surveys are the same but the summer survey indicates a considerably more depleted stock in recent years than the summer survey; both surveys indicate a slow increase in recent years. Age disaggregated data are available for the whole summer series, but due to problems with the database (see earlier reports), age disaggregated data for the spring survey are only available since 1994. The calculation of indices at age is based on age-length keys with a smoother applied. This is a useful method but, some artefacts may be introduced because the smoothing can assign wrong ages to some lengths, especially for the youngest and oldest specimen. As in recent years, the length distributions have been used more directly for calculation of indices at age (ages 0-2), since these ages have length distributions almost without overlap. LN (numbers-at-age) for the surveys are presented in Figures 5.10-5.11. Further analyses of the performances of the two series are shown in the stock annex. In general there is a good relationship between the indices for one year class in two successive years.

A SPALY (same procedure as last year) run, with the same settings of the XSA as in 2015 (tuned with the two surveys combined) (Table 5.8), with 2016 data included and some minor revisions of recent catch figures, gave in general similar results as last year (Table 5.9), although this year's assessment indicates that the 2015 assessment underestimated the 2014 recruitment by $42 \%$ ( 2.6 million vs. 4.4 .5 million, which still is among the lowest on record), underestimated the fishing mortality in 2014 by $10 \%$ ( 0.26 vs. 0.29 ) and overestimated the 2014 total and spawning-stock biomasses by $7 \%$ and $27 \%$, respectively ( 20 and 18 thous. t vs. 18 and 14 thous. t

The $\log \mathrm{q}$ residuals for the two surveys are shown in Figure 5.12
The retrospective analysis of fishing mortality, recruitment and spawning-stock biomass of this XSA is shown in Figure 5.13. The retrospective pattern of the fishing mortality is hampered by strange values of some small poorly sampled year classes which in some years are included in the Fbar reference ages and consequently they will create problems for estimation of the stock (see the 2005 NWWG report); this is not a problem for the time being but the development of recent small year classes are being carefully inspected.

It has been questioned if a rather heavy shrinkage of 0.5 is the most appropriate to a stock like Faroe haddock where biological parameters and fishing mortality (catchability) are closely linked to productivity changes in the ecosystem. In order to investigate the possible effect of the shrinkage, the 2010 NWWG carried out an exploratory XSA without shrinkage (Shr. 2.0). Based on that it was concluded to continue with a shrinkage of 0.5 and this shrinkage was also applied this year.

Results. The fishing mortalities from the final XSA run are given in Table 5.9 and in Figure 5.14. The fishing mortality was high (around 0.6) in the 1950s and early 1960s but declined to around 0.2 from 1965-1975. Since then, fishing mortality has usually been low, the exceptions are peaks in 1977, 1982, 1997-1999 and 2003-2006. They occur near the end of relatively high catch periods and some of the highest values ( $0.32-0.45$ ) are nearly certainly an artefact of the unweighted fishing mortality. Exploitation ratio (Yield/Biomass) is a bit more stable and may be used to indicate the level of fishing mortality.

### 5.5 Reference points

The yield- and spawning-stock biomass per recruit (age 2) based on the long-term data are shown in Table 5.16 and Figure 5.16. From Table 5.16, F med, $_{\text {, and }}$ Fhigh were calculated at 0.22 and 0.82 , respectively. The $F_{\max }$ of 0.6 should not be used since it is very poorly determined due to the flat YPR curve. Fo.1 is estimated at 0.2. The F35\%SPR was estimated at 0.23.

The precautionary reference fishing mortalities were set in 1998 by ACFM with $\mathrm{F}_{\mathrm{pa}}$ as the $\mathbf{F}_{\text {med }}$ value of 0.25 and Flim two standard deviations above $\mathbf{F}_{\text {pa }}$ equal to 0.40 . The precautionary reference spawning-stock biomass levels were changed by ACFM in 2007. $B_{\text {lim }}$ was set at $22000 t\left(B_{\text {loss }}\right)$ and $B_{p a}$ at $35000 t$ based on the formula $B_{p a}=B_{\lim } e^{1.645 \sigma}$, assuming a $\sigma$ of about 0.3 to account for the uncertainties in the assessment.

The working group in 2012 investigated possible candidates for Fmš. Based on Medium -term projections, Medium-term projections the NWWG suggested, that FMSY preliminary could be set at 0.25 and the MSY Btrigger at 35 thous. $t$ (same as $B_{p a}$ ) These values were accepted by ACOM. Some further analyses have indicated that these
values are acceptable, but it is anticipated that further work will be untertaken in connection with the next benchmark assessment. See the stock annex for more details.

### 5.6 State of the stock - historical and compared to what is now.

The stock size in numbers is given in Table 5.11 and a summary of the VPA with the biomass estimates is given in Table 5.12 and in Figure 5.14. According to this assessment, the period up to the mid 1970s was characterized by relative high and stable landings, recruitment and spawning-stock biomass and the stock was able to withstand relatively high fishing mortalities. Since then the spawning-stock biomass has shown large fluctuations due to cyclical changes in recruitment, growth and maturity (Figures 5.5 and 5.6). The fishing mortality does not seem to be the decisive factor in this development since it most of the period has fluctuated around the Fmsy and $\mathrm{F}_{\mathrm{pa}}$. It must though be remembered that the characteristics of the stock in recent decades with long periods of poor recruitment make it less resilient to high fishing mortality.

The most recent increase in the spawning stock is due to new strong year classes entering the stock of which the 1999 year class is the highest on record (103 million at age 2). Also the YC's from 2000 and 2001 are estimated well above average and the 2002 YC above average, but the more recent YC's are all estimated to be very small except the 2009 YC, which is estimated to be slightly above the half of the average for the whole series back to 1957 and the 2010 and 2014 YC's, which are estimated somewhat higher than the other small year classes. Fishing mortality has been relatively high since 2003, highest when the stock was large leading to large variability of catches. Currently fishing mortality is estimated close to $\mathrm{F}_{\text {msy }}$ (0.25).

### 5.7 Short-term forecast

## Input data

The input data for the short-term predictions are estimated in accordance with the procedures last year and explained in Tables 5.12-13. The YC 2016 at age 2 in 2018 is estimated as the geometric mean of the 2 -year-olds since 2005 . This procedure was introduced in 2011. All available information suggests that using the recent short series with poor recruitment is more appropriate than the longer period used in the past. However, the choice of recruitment in 2018 has little effect on the short-term prediction.

## Results

Although the allocated number of fishing days for the fishing year 2015-2016was reduced for some fleets as compared to the year before (see section 2), it should not be unrealistic to assume fishing mortalities in 2016 as the average of some recent years, here the average of F (2013-2015), since not all allocated days were actually used; however, possible changes in the catchability of the fleets (which seems to be linked to productivity changes in the environment) could undermine this assumption; price differences between cod and haddock may also influence this assumption. The landings in 2016 are then predicted to be about 4000 t , and continuing with this fishing mortality will result in 2017 landings of about 5300 t (Table 5.15). The SSB will increase to 20000 t in 2016, and increase further in 2017 and 2018 to 24000 t and 41000 t , respectively. This prediction should however be treated with great care since most of the increase is based on number of 1 year old in the 2016 spring survey. The results of the short-term prediction are shown in Table 5.16 and in Figure 5.14. The contribution (\%) by year classes to the age composition of the predicted 2016 and 2017 SSB's is shown in Figure
5.17. It should be noted that young $\mathrm{YC}^{\prime}$ 's which not have really entered the fishery in 2015/16, will contribute by a large proportion of the SSB in 2017/18.

### 5.8 Medium term forecasts and yield-per-recruit

No medium term projections were made this year; however, the 2013 projections, which were the basis for suggested MSY reference points, are presented in the stock annex.

The input data for the long-term yield and spawning-stock biomass (yield-per-recruit calculations) are listed in Table 5.15. Mean weights-at-age (stock and catch) are averages for the 1977-2015 period. The maturity o-gives are averages for the years 19822015. The exploitation pattern is the same as in the short-term prediction.

The results are given in Table 5.16, in Figure 5.16 and under Reference points (section 5.5).

### 5.9 Uncertainties in assessment and forecast

Retrospective analyses indicate periods with tendencies to overestimate spawningstock biomass and underestimate fishing mortality and vice versa. Similar things can be seen with the recruitment. This year's assessment indicates that the 2015 assessment underestimated the 2014 recruitment by $42 \%$ ( 2.6 million vs. 4.5 million, which still is among the lowest on record), underestimated the fishing mortality in 2014 by 10\% ( 0.29 vs. 0.26 ) and overestimated the 2014 total- and spawning-stock biomasses by $7 \%$ and $27 \%$, respectively ( 20 and 18 thous. t vs. 19 and 14 thous. t ), see text table below..

Recruitment estimates from surveys are not very consistent for small cohorts...
The sampling of the catches for length measurements, otolith readings and lengthweight relationships has decreased somewhat compared to 2015. Although it is regarded to be adequate for the assessment, there is a need to improve it again (see 5.2).

### 5.10 Comparison with previous assessment and forecast

As explained previously in the report, this assessment is an update of the 2015 assessment. The only changes are minor revisions of recent landings according to revised data and corresponding revisions of the c@age input. All other input files (VPA and tuning fleets) are the same except for the addition of the 2015 data.
Following differences in the 2014 estimates were observed as compared to last year (see text above):

## Comparisons between 2015 and 2016 assessment of 2014 data

 The year of comparison is 2014|  | R at age 2 <br> (thousands) | Total B <br> (tonnes) | SSB <br> (tonnes) | Landings <br> (tonnes) | F (3-7) |
| :--- | :---: | :---: | :---: | :---: | :---: |
| 2015 spaly | 2596 | 19643 | 17931 | 2950 | 0.2595 |
| 2016 spaly | 4513 | 18411 | 14083 | 3276 | 0.2876 |
| \%-change | 42 | -7 | -27 | 10 | 10 |

### 5.11 Management plans and evaluations

There is no explicit management plan for this stock. A management system based on number of fishing days, closed areas and other technical measures was introduced in 1996 with the purpose to ensuring sustainable fisheries. There has been some work with establishing a management plan with a harvest control role for cod, haddock and saithe including a recovery plan, but the proposal has not yet been officially accepted. There is ongoing work with a revision on most aspect of the fisheries legislation. See overview in section 2 for details.

### 5.12 Management considerations

Management of fisheries on haddock also needs to take into account measures for cod and saithe.

### 5.13 Ecosystem considerations

Since on average about $80 \%$ of the catches are taken by longlines and the remaining by trawls, effects of the haddock fishery on the bottom is moderate.

### 5.14 Regulations and their effects

As explained in the overview (section 2), the fishery for haddock in $5 . b$ is regulated through a maximum number of allocated fishing days, gear specifications, closed areas during spawning times, closed areas for longlining close to land and large areas closed to trawling. As a consequence, around $80 \%$ of the haddock landings derive from longline fisheries. Since the minimum mesh size in the trawls (codend) is 145 mm , the trawl catches consist of fewer small fish than the longline fisheries. Other nations fishing in Faroese waters are regulated by TACs obtained during bilateral negotiations; their total landings are minimal, however, and in 2011-2013 no agreement could be made between the Faroe Islands and EU and Norway, respectively, due to the dispute on mackerel quota sharing. In 2014 and 2015, however, the parties managed to get an agreement in place again. Discarding of haddock is considered minimal and there is a ban to discarding.

### 5.15 Changes in fishing technology and fishing patterns

See section 2.

### 5.16 Changes in the environment

See section 2.

### 5.17 Tables

Table 5.1 Faroe Plateau (Sub-division 5.b.1) HADDOCK. Nominal catches (tonnes) by countries 2000-2015 and Working Group estimates in 5.b.

| Country | 2000 | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | $2015{ }^{2}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Faroe Islands | $13,620^{8}$ | $13,457{ }^{8}$ | 20,776 ${ }^{6}$ | 21,615 | 18,995 | 18,172 | 15,600 | 11,689 | 6,728 | 4,895 | 4,932 | 3,350 | 2,490 | 2,877 | 2,756 | 2,910 |
| France1 | 6 | $8^{7}$ | 2 | 4 | $1^{5}$ | + | $12^{5}$ | $4^{5}$ | $3^{5}$ | $2^{5}$ | $1{ }^{7}$ | 3 |  |  |  | + |
| Germany | 1 | 2 | 6 | 1 | 6 |  | 1 |  |  |  |  |  |  |  |  |  |
| Greenland | $22^{6}$ | $0^{6}$ | $4^{4}$ |  |  |  | 1 | $9{ }^{4}$ |  | $6{ }^{4}$ | $12^{6}$ | + | $1{ }^{4}$ |  |  |  |
| Iceland |  |  | 4 |  |  |  |  |  |  |  |  |  | 2 | $26^{4}$ |  |  |
| Norway | 355 | $257{ }^{2}$ | 227 | 265 | 229 | 212 | 57 | 61 | 26 | 8 | 5 |  |  |  | 2 | 5 |
| Russia |  |  |  |  | 16 |  |  |  | 10 |  |  |  |  |  |  |  |
| Spain |  |  |  |  | 49 |  |  |  |  |  |  |  |  |  |  |  |
| UK (Engl. and Wales) | $19^{7}$ | $4^{7}$ | $11^{5}$ | 14 | 8 | 1 | 1 |  |  |  |  |  |  |  |  |  |
| UK (Scotland) 5 |  |  |  | 185 | 186 | 126 | 106 | 35 | 60 | 64 |  |  |  |  |  |  |
| United Kingdom |  |  |  |  |  |  |  |  |  |  | $73{ }^{4}$ |  |  |  | 350 | 449 |
| Total | 14,023 | 13,728 | 21,030 | 22,084 | 19,490 | 18,511 | 15,778 | 11,798 | 6,827 | 4,975 | 5,023 | 3,353 | 2,493 | 2,903 | 3,130 | 3,364 |
| Used in the assessment in 5.b. | 15,821 | 15,890 | 24,933 | 27,072 | 23,101 | 20,455 | 17,154 | 12,631 | 7,388 | 5,197 | 5,202 | 3,540 | 2,634 | 2,950 | 3,276 | 3,395 |

1) Including catches from Sub-division 5.b.2. Quantity unknown 1989-1991, 1993 and 1995-2001
2) Preliminary data
3) From 1983 to 1996 catches included in Sub-division 5.b.2.
4) Reported as Division 5. b, to the Faroese coastal guard service.
5) Reported as
6) Reported as Division 5.b.
7) Includes Faroese landings reported to the NWWG by the Faroe Marine Research Institute

Table 5.2 Faroe Bank (Sub-division 5.b.2) HADDOCK. Nominal catches (tonnes) by countries, 2000-2015.

| Country | 2000 | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | $2015{ }^{2}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Faroe Island | 1,565 ${ }^{\text {s }}$ | 1,948 | 3,698 | 4,934 | 3,594 | 2,444 | 1,375 | 810 | 556 | 192 | 178 | 194 | 141 | 47 | 71 | 30 |
| France1 |  |  |  |  |  | + |  |  |  |  |  |  |  |  |  |  |
| Norway | 48 | 66 | 28 | 54 | 17 | 45 | 1 | 8 |  | 3 | 1 |  |  |  | 1 | 1 |
| UK (Engl. and | les) | : | : | : | : | 1 | 4 |  |  |  |  |  |  |  |  |  |
| UK (Scotlar | 185 | 148 | 177 | 4 | : | 1 | 4 | 15 | 5 | 27 | 33 |  |  |  | 74 |  |
| Total | 1,798 | 2,162 | 3,903 | 4,988 | 3,611 | 1,944 | 1,376 | 833 | 561 | 222 | 212 | 194 | 141 | $47^{\prime \prime}$ | $146^{\prime \prime}$ | 31 |

1) Catches included in Sub-division 5.b.1
2) Provisional data
3) From 1983 to 1996 includes also catches taken in Sub-division 5.b.1. (see Table 2.4.1)
4) Reported as Division 5.b.
5) Provided by the NWWG

Table 5.3
Catch at age 2015

| Age | 5.b LLiners $<100 \mathrm{GRT}$ | $\begin{gathered} \hline \text { 5.b } \\ \text { LLiners } \\ >100 \mathrm{GRT} \\ \hline \end{gathered}$ | 5.b Trawl $<1000 \mathrm{HP}$ | 5.bTrawl <br> $>$ <br> 1000 HP | 5.b Regulator | $5 . b$ <br> All Faroese <br> fleets | 5.b Foreign Trawlers | 5.b Foreign Lliners | 5.b Total All fleets |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 |
| 2 | 260 | 81 | 4 | 16 | 2 | 362 | 24 | 0 | 384 |
| 3 | 633 | 211 | 71 | 92 | 0 | 1007 | 137 | 1 | 1144 |
| 4 | 87 | 59 | 43 | 52 | 2 | 242 | 77 | 0 | 318 |
| 5 | 212 | 193 | 42 | 47 | 3 | 493 | 70 | 1 | 560 |
| 6 | 114 | 116 | 23 | 28 | 2 | 281 | 42 | 1 | 322 |
| 7 | 12 | 17 | 4 | 6 | 0 | 40 | 10 | 0 | 50 |
| 8 | 4 | 11 | 2 | 4 | 0 | 21 | 5 | 0 | 27 |
| 9 | 3 | 14 | 1 | 2 | 0 | 20 | 3 | 0 | 23 |
| 10 | 4 | 3 | 1 | 1 | 0 | 10 | 2 | 0 | 11 |
| 11 | 1 | 3 | 0 | 1 | 0 | 4 | 1 | 0 | 5 |
| 12 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 2 |
| 13 | 1 | 1 | 0 | 0 | 0 | 2 | 0 | 0 | 2 |
| 14 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 15 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Total no. | 1333 | 709 | 192 | 251 | 16 | 2485 | 373 | 4 | 2847 |
| Catch, t. | 1296 | 896 | 201 | 273 | 17 | 2665 | 405 | 5 | 3058 |

Notes: $\quad$ Numbers in $1000^{\circ}$
Catch, gutted weight in tonnes
Others includes netters, jiggers, other small categories and catches not otherwise accounted for
LLiners = Longliners OB.trawl. = Otterboard tra^ Pair Trawl. = Pair trawlers

| $\begin{gathered} \hline \text { Comm. } \\ \text { Sampling } \\ 2015 \\ \hline \end{gathered}$ | 5.b LLiners $<100 \mathrm{GRT}$ | 5.b LLiners $>100 \mathrm{GRT}$ | 5.b Trawl $<1000 \mathrm{HP}$ | 5.b Trawl $<1000 \mathrm{HP}$ | 5.b Regulator | $5 . b$ <br> All Faroese <br> Fleets | 5.b Foreign Trawlers | 5.b <br> Foreign Lliners | $\begin{gathered} \text { 5.b } \\ \text { Total } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| No. samples | 7 | 14 | 9 | 34 | 0 | 64 | 0 | 0 | 73 |
| No. lengths | 1525 | 2947 | 1599 | 7476 | 0 | 13547 | 0 | 0 | 16942 |
| No. weights | 1525 | 2947 | 1599 | 7476 | 0 | 13547 | 0 | 0 | 16942 |
| No. ages | 140 | 300 | 159 | 589 | 0 | 1188 | 0 | 0 | 1379 |

As compared to 2014, the sampling in 2015 was:
no samples $-7 \%$, no of lengths $-8 \%$, no of weights $5 \%$, no of otoliths $-4 \%$.

Table 5.4 Faroe haddock. Catch number-at-age


|  | Table 1 | Catch numbers-at-age |  |  |  |  | Numbers*10**-3 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1984, | YEAR, 1985, | 1976, | 1977, | 1978, | 1979, | 1980, | 1981, | 1982, | 1983, |
| AGE |  |  |  |  |  |  |  |  |  |
|  | 0 , | 0 , | 0 , | 0 , | 0 , | 0 , | 0 , | 0 , | 0 , |
| 0, | 0 , |  |  |  |  |  |  |  |  |
|  | 1, | 40, | 0 , | 0, | 1, | 0 , | 0 , | 0 , | 0 , |
| 25, | 0 , |  |  |  |  |  |  |  |  |
|  | 2, | 4396, | 255, | 32, | 1, | 143, | 74, | 539, | 441, |
| 1195, | 985, |  |  |  |  |  |  |  |  |
|  | 3 , | 7858, | 4039, | 1022, | 1162, | 58, | 455, | 934, | 1969, |
| 1561, | 4553, |  |  |  |  |  |  |  |  |
|  | 4, 2196 | 6798, | 5168, | 4248, | 1755, | 3724, | 202, | 784, | 383, |
| 2462 , | 5, | 1251, | 4918, | 4054, | 3343, | 2583, | 2586, | 298, | 422, |
| 147, | 1242, |  |  |  |  |  |  |  |  |
|  | 6, | 1189, | 2128, | 1841, | 1851, | 2496, | 1354, | 2182, | 93, |
| 234, | 169, |  |  |  |  |  |  |  |  |
|  | 7, | 298, | 946, | 717, | 772, | 1568, | 1559, | 973, | 1444, |
| 42, | 91, |  |  |  |  |  |  |  |  |
|  | 8, 61, | 720, | 443, | 635, | 212, | 660, | 608, | 1166, | 740, |
| 861, | 9, | 258, | 731, | 243, | 155, | 99, | 177, | 1283, | 947, |
| 388, | 503, |  |  |  |  |  |  |  |  |
|  | +gp, | 318, | 855, | 312, | 74, | 86, | 36, | 214, | 795, |
| 968, | 973, |  |  |  |  |  |  |  |  |
|  | TOTALNUM, | 23126, | 19483, | 13104, | 9326, | 11417, | 7051, | 8373, | 7234, |
| 7883, | 10773, |  |  |  |  |  |  |  |  |
|  | TONSLAND, | 26211, | 25555, | 19200, | 12424, | 15016, | 12233, | 11937, | 12894, |
| 12378, | , 15143, |  |  |  |  |  |  |  |  |
|  | SOPCOF \%, | 107, | 98, | 99, | 104, | 100, | 109, | 92, | 106, |
| 106, | 106, |  |  |  |  |  |  |  |  |

Table 5.4 Faroe haddock. Catch number-at-age (cont.)


|  | 0, | 0 , | 0 , | 0 , | 0 , | 0, | 0 , | 0, | 0 , |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 , | 0, |  |  |  |  |  |  |  |  |
|  | 1, | 0, | 0, | 6, | 0, | 0, | 0 , | 0 , | 0 , |
| 0 , | 0, |  |  |  |  |  |  |  |  |
|  | 2, | 247, | 76, | 66, | 27, | 389, | 170, | 8, | 83, |
| 238, | 384, |  |  |  |  |  |  |  |  |
|  | 3. | 446, | 982, | 204 , | 329, | 445, | 773, | 960, | 510, |
| 395, | 1144, |  |  |  |  |  |  |  |  |
|  | $4$ | 2566, | 547, | 918, | 402, | 426, | 324, | 513, | 1118, |
| 642, | $\begin{aligned} & 318, \\ & 5, \end{aligned}$ | 3949, | 2732, | 424, | 555, | 279, | 198, | 156, | 219, |
| 1141, | 560, |  |  |  |  |  |  |  |  |
|  | 6 , | 5423, | 3309, | 1471, | 514, | 484, | 186, | 114, | 95, |
| 102, | 322, |  |  |  |  |  |  |  |  |
|  | 7, | 3278, | 2758, | 1706, | 1133, | 553, | 280, | 123, | 78, |
| 61 , | 49, |  |  |  |  |  |  |  |  |
|  | 8 , | 136, | 1117, | 1254, | 739, | 718, | 353, | 94, | 88, |
| 32, | 27, |  |  |  |  |  |  |  |  |
|  | 9, | 63, | 89, | 320, | 285, | 444, | 367, | 171, | 71, |
| 15, | 23, |  |  |  |  |  |  |  |  |
|  | +gp, | 70, | 9, | 39, | 48, | 159, | 187, | 114, | 119, |
| 48, | 20, |  |  |  |  |  |  |  |  |
| 2674, | $\begin{array}{r} \text { TOTALNUM, } \\ 2847, \end{array}$ | 16178, | 11619, | 6408, | 4032, | 3897 , | 2838, | 2253, | 2381, |
|  | TONSLAND, | 17154, | 12631, | 7388, | 5197, | 5202, | 3540, | 2634, | 2950, |
| 3276, | 3395, |  |  |  |  |  |  |  |  |
|  | SOPCOF \%, | 100, | 100, | 101, | 100, | 101, | 101, | 102, | 101, |
| 101, | 100, |  |  |  |  |  |  |  |  |

## Table 5.5 Faroe haddock. Catch weight-at-age.




Table 5.5 Faroe haddock. Catch weight-at-age (cont.).


| $1.8430, \quad 7$ | 2.3510, | 2.3400, | 2.5560, | 2.4560, | 1.8930, | 2.1190, | 2.3010, | 2.0910, | 1.8700, |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2.0610, 8, 2.4690, 2.4750, 2.5720, 2.6580, 2.8210, 2.3730, 2.3700, 2.3010, 2.4380, |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
| 9, | 2.7770, | 2.5010, | 2.4520, | 2.5980, | 3.7490, | 2.7500, | 2.6260, | 2.4060, | 2.3570, |
| 2.2630, |  |  |  |  |  |  |  |  |  |
| +gp, | 2.5820, | 2.6760, | 2.7530, | 2.9530, | 3.1960, | 3.9660 , | 3.1300, | 2.5350, | 2.4170, |
| 2.5790, |  |  |  |  |  |  |  |  |  |
| SOPCOFAC, $.9988,$ | 1.0043, | 1.0250, | 1.0106, | . 9973 , | 1.0349, | . 9960 , | 1.0010, | 1.0049, | .9929, |
| Table 2 Catch weights at age (kg) |  |  |  |  |  |  |  |  |  |
| 2015, YEAR, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014, |  |  |  |  |  |  |  |  |  |
| AGE |  |  |  |  |  |  |  |  |  |
| . $0000, \mathrm{l}$, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, |  |  |  |  |  |  |  |  |  |
| .4240, 1, .0000, .0000, .4910, .0000, .0000, .0000, .0000, .0000, .0000, |  |  |  |  |  |  |  |  |  |
| . 5330, 2, .4750, .6280, .6360, .4820, .6920, . 5 , |  |  |  |  |  |  |  |  |  |
| .8890, 3, .6010, .6690, .7540, .7340, .8700, .8150, .7860, .8300, .9020, |  |  |  |  |  |  |  |  |  |
| 1.3530, 4, .7680, .8590, .8600, .9850, 1.1490, 1.0860, 1.0690, 1.1490, 1.1650, |  |  |  |  |  |  |  |  |  |
| 1.6400, 5, .9110, .9690, .9910, 1.1300, 1.3080, 1.3030, 1.4050, 1.4650, 1.3540, |  |  |  |  |  |  |  |  |  |
| 1.7290, 6, 1.1260, 1.0600, 1.0820, 1.2640, 1.3860, 1.3870, 1.6160, 1.7100, 1.6930, |  |  |  |  |  |  |  |  |  |
| 2.4240, 7, 1.3740, 1.2450, 1.1510, 1.3570, 1.4290, 1.4690, 1.6560, 1.8270, 1.8410, |  |  |  |  |  |  |  |  |  |
| 2.0030, 8, 2.1580, 1.4750, 1.3790, 1.5450, 1.5680, 1.5380, 1.6750, 1.8860, 1.8720, |  |  |  |  |  |  |  |  |  |
| 2.2180, 9, 2.2110, 2.2660, 1.7270, 1.7920, 1.7400, 1.7020, 1.7270, 1.8560, 1.8560, |  |  |  |  |  |  |  |  |  |
| 2.3020, ${ }^{\text {g }}$, $2.5690,2.2560,2.4350,2.1540,1.8410,1.8620,1.9050,2.0850,1.8230$, |  |  |  |  |  |  |  |  |  |
| SOPCOFAC, $.9994,$ | . 9987 , | .9999, | 1.0065, | .9955, | 1.0076, | 1.0060, | 1.0190, | 1.0077, | 1.0112, |

Table 5.6Faroe haddock. Proportion mature-at-age.

1.0000,

YEAR, 1966, 1967, 1968, 1969, 1970, 1971, 1972, 1973,

| 1974, | $\begin{aligned} & \text { YEAR, } \\ & 1975, \end{aligned}$ | 1966, | 1967, | 1968, | 1969, | 1970, | 1971, | 1972, | 1973, |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| AGE |  |  |  |  |  |  |  |  |  |
|  | 0 , | . 0000 , | . 0000 , | . 0000 , | . 0000 , | . 0000 , | . 0000 , | . 0000 , | . 0000 , |
| . 0000 , | . 0000 , |  |  |  |  |  |  |  |  |
|  | 1, | . 0000 , | . 0000 , | . 0000 , | . 0000 , | . 0000 , | . 0000 , | . 0000 , | . 0000 , |
| . 0000 , | $\begin{aligned} & .0000, \\ & 2, \end{aligned}$ | . 0600 , | . 0600 , | . 0600 , | . 0600 , | . 0600 , | . 0600 , | . 0600, | . 0600 , |
| . 0600 , | $.0600$ |  |  |  |  |  |  |  |  |
|  | $3,$ | . 4800 , | . 4800 , | . 4800 , | . 4800 , | . 4800, | . 4800 , | . 4800, | . 4800 , |
| . 4800, | $\begin{aligned} & .4800, \\ & 4, \end{aligned}$ | . 9100 , | . 9100 , | . 9100 , | . 9100, | .9100, | . 9100 , | . 9100 , | . 9100, |
| . 9100, | $\begin{aligned} & .9100, \\ & 5, \end{aligned}$ | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, |
| 1.0000, | $\begin{aligned} & 1.0000, \\ & 6, \end{aligned}$ | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, |
| 1.0000, | $\begin{aligned} & 1.0000, \\ & 7, \end{aligned}$ | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, |
| 1.0000, | $\begin{aligned} & 1.0000, \\ & 8, \end{aligned}$ | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, |
| 1.0000, | $\begin{aligned} & 1.0000, \\ & 9, \end{aligned}$ | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, |
| 1.0000, | 1.0000, |  |  |  |  |  |  |  |  |
| $1.0000,$ | $\begin{aligned} & +\mathrm{gp}, \\ & \quad 1.0000, \end{aligned}$ | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, |



| .0800, |  | . 0600 , | .0600, | . 0600 , | . 0600 , | . 0600 , | .0600, | .0800, | .0800, |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 3, | . 4800, | . 4800 , | . 4800 , | . 4800 , | . 4800 , | . 4800 , | . 6200, | .6200, |
| . 7600 , | $4$ | . 9100, | . 9100, | . 9100, | . 9100, | . 9100, | . 9100, | .8900, | .8900, |
| . 9800 , | $.9600,$ | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, |
| 1.0000, | $\begin{aligned} & 1.0000, \\ & 6, \end{aligned}$ | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, |
| 1.0000, | $\begin{aligned} & 1.0000, \\ & 7, \end{aligned}$ | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, |
| 1.0000, 1.0000, | $\begin{aligned} & 1.0000, \\ & 8, \\ & 1.0000, \end{aligned}$ | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, |
| 1.0000, | $\begin{aligned} & 9, \\ & 1.0000, \end{aligned}$ | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, |
| 1.0000, | $\begin{aligned} & \mathrm{gp}, \\ & 1.0000, \end{aligned}$ | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, |

Table 5.6 Faroe haddock. Proportion mature-at-age (cont.).

| 1995, | Table 5 Proportion mature at age |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | YEAR, | 1986, | 1987, | 1988, | 1989, | 1990, | 1991, | 1992, | 1993, | 1994, |
|  | AGE |  |  |  |  |  |  |  |  |  |
| . 0000 , | 0 , | . 0000 , | . 0000 , | . 0000 , | . 0000 , | . 0000 , | . 0000 , | . 0000 , | . 0000 , | . 0000 , |
| $.0000$ | 1, | . 0000 , | . 0000 , | . 0000 , | . 0000 , | . 0000 , | . 0000 , | . 0000 , | . 0000 , | . 0000 , |
| . 0300, | 2, | . 0300, | . 0500 , | . 0500, | . 0200, | . 0800 , | . 1600, | . 1800, | .1100, | . 0500, |
| . 4700 , | 3 , | . 4300, | . 3200, | . 2400 , | . 2200, | . 3700 , | . 5800 , | .6500, | . 5000, | . 4200, |
| . 9100 , | 4, | . 9500 , | . 9100, | . 8900, | . 8700 , | . 9000 , | . 9300 , | . 9100, | . 8500, | . 8600 , |
| . 9600 , | 5, | . 9900 , | . 9800 , | . 9800 , | . 9900 , | 1.0000, | 1.0000, | 1.0000, | . 9700 , | . 9600 , |
| . 9900 , | 6, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | . 9900 , | . 9900 , |
| 1.0000, | 7, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, |
| 1.0000, | 8, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, |
| 1.0000, | 9, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, |
| 1.0000, | +gp, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, |




Table 5.7. Faroe haddock. 2016 tuning file.


| 100 | 5798.80 | 6022.70 | 7742.00 | 6165.00 | 4565.90 | 4912.80 | 238.60 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 100 | 705.50 | 6284.80 | 1574.60 | 4457.00 | 3250.40 | 3267.40 | 1577.20 |
| 100 | 1191.70 | 1873.30 | 4202.40 | 1008.90 | 3511.30 | 3712.50 | 2875.00 |
| 100 | 667.90 | 2182.60 | 820.20 | 1694.90 | 599.50 | 1665.00 | 1463.80 |
| 100 | 4119.00 | 2079.00 | 1125.10 | 405.90 | 916.80 | 371.50 | 924.90 |
| 100 | 6945.00 | 4655.30 | 638.10 | 418.70 | 196.20 | 280.20 | 265.90 |
| 100 | 101.10 | 6320.00 | 1865.90 | 449.30 | 260.30 | 212.60 | 244.60 |
| 100 | 420.00 | 367.60 | 4957.20 | 908.00 | 227.80 | 142.50 | 293.30 |
| 100 | 3419.90 | 1232.21 | 302.60 | 4022.40 | 619.60 | 120.30 | 103.78 |
| 100 | 3542.60 | 4099.30 | 869.80 | 930.30 | 2238.40 | 270.20 | 90.30 |
| 100 | 1545.00 | 3327.70 | 4123.00 | 1086.10 | 2026.30 | 1296.40 | 184.10 |
| 100 | 12458.90 | 4441.90 | 2487.80 | 1332.90 | 263.00 | 428.50 | 107.00 |

Table 5.8Faroe haddock 2016 xsa.


## Table 5.8 Faroe haddock 2016 xsa (cont.)

XSA population numbers (Thousands)

| $\begin{aligned} & \text { YEAR , } \\ & 8, \end{aligned}$ | 9, 0, | 1, | AGE $2,$ | 3 , | 4, | 5, | 6 , | 7, |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2006 | 3.97E+03, | 3.77E+03, | 7.59E+03, | 6.83E+03, | 1.68E+04, | 1.75E+04, | 1.43E+04, | 7.20E+03, |
| 4.91E+02, | 1.51E+02, |  |  |  |  |  |  |  |
| 2007 | 3.43E+03, | 3.25E+03, | 3.09E+03, | 5.99E+03, | 5.19E+03, | 1.15E+04, | 1.08E+04, | $6.83 \mathrm{E}+03$, |
| 2.93E+03, | 2.79E+02, |  |  |  |  |  |  |  |
| 2008 | $6.30 \mathrm{E}+03$, | 2.81E+03, | 2.66E+03, | 2.46E+03, | 4.01E+03, | $3.75 \mathrm{E}+03$, | $6.91 \mathrm{E}+03$, | 5.82E+03, |
| $3.10 \mathrm{E}+03$, | 1.39E+03, |  |  |  |  |  |  |  |
| 2009 | 1.74E+04, | $5.16 \mathrm{E}+03$ | 2.29E+03, | 2.12E+03, | 1.83E+03, | $2.45 \mathrm{E}+03$, | 2.69E+03, | 4.33E+03, |
| 3.22E+03, | 1.40E+03, |  |  |  |  |  |  |  |
| 2010 | $6.73 \mathrm{E}+03$, | 1.42E+04, | 4.22E+03, | 1.85E+03, | 1.44E+03, | 1.13E+03, | 1.51E+03, | 1.74E+03, |
| 2.52E+03, | 1.97E+03, |  |  |  |  |  |  |  |
| 2011 | $4.10 \mathrm{E}+03$, | 5.51E+03, | 1.17E+04, | 3.11E+03, | 1.12E+03, | 7.90E+02, | $6.75 E+02$, | $7.97 \mathrm{E}+02$, |
| 9.22E+02, | 1.41E+03, |  |  |  |  |  |  |  |
| 2012 | 1.31E+04, | 3.35E+03, | 4.51E+03, | 9.39E+03, | 1.84E+03, | $6.20 \mathrm{E}+02$ | 4.68E+02, | $3.84 \mathrm{E}+02$, |
| $3.99 \mathrm{E}+02$, | 4.36E+02, |  |  |  |  |  |  |  |
| 2013 | 1.51E+04, | 1.07E+04, | 2.75E+03, | 3.69E+03, | $6.82 \mathrm{E}+03$, | 1.05E+03, | $3.67 \mathrm{E}+02$, | $2.80 \mathrm{E}+02$, |
| 2.03E+02, | 2.41E+02, |  |  |  |  |  |  |  |
| 2014 | 1.02E+04, | 1.24E+04, | 8.80E+03, | 2.17E+03, | 2.56E+03, | 4.57E+03, | $6.58 \mathrm{E}+02$, | $2.14 \mathrm{E}+02$, |
| 1.58E+02, | 8.67E+01, |  |  |  |  |  |  |  |
| 2015 | $6.24 \mathrm{E}+04$, | 8.34E+03, | 1.01E+04, | $6.99 \mathrm{E}+03$, | 1.42E+03, | 1.51E+03, | 2.71E+03, | 4.46E+02, |
| 1.20E+02, | 1.01E+02, |  |  |  |  |  |  |  |

Estimated population abundance at 1st Jan 2016
$0.00 \mathrm{E}+00,5.11 \mathrm{E}+04,6.83 \mathrm{E}+03,7.94 \mathrm{E}+03,4.69 \mathrm{E}+03,8.77 \mathrm{E}+02,7.32 \mathrm{E}+02,1.93 \mathrm{E}+03$, 3.21E+02, 7.40E+01,
raper weighted geometric mean of the VPA populations:
$2.37 \mathrm{E}+04,1.94 \mathrm{E}+04,1.63 \mathrm{E}+04,1.27 \mathrm{E}+04,8.58 \mathrm{E}+03,5.26 \mathrm{E}+03,3.16 \mathrm{E}+03,1.74 \mathrm{E}+03$, 8. $64 \mathrm{E}+02,4.18 \mathrm{E}+02$,

Standard error of the weighted Log(VPA populations) :


Log catchability residuals.

Fleet : SUMMER SURVEY

| Age | , | 1996, | 1997, | 1998, | 1999, | 2000, | 2001, | 2002, | 2003, | 2004, | 2005 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 |  | No dat | for this fleet at this age |  |  |  |  |  |  |  |  |
| 1 | , | 1.22, | . 27 , | -. 14, | -. 20, | .13, | .17, | . 44 , | . 21, | -. 26 , | 32 |
| 2 | , | .16, | . 65, | . 05, | -. 16, | . 25 , | . 30, | . 20 , | .19, | . 52, | 23 |
| 3 | , | . 34, | .18, | -. 40, | 1.52, | . 20, | . 40 , | . 36, | -. 15, | -. 22 , | 04 |
| 4 | , | -. 45, | . 42 , | . 03, | -. 53, | -. 71, | . 26, | .11, | . 33, | -. 18, | 17 |
| 5 | , | -. 21 , | -.06, | . 02, | . 07 , | -. 20 , | -1.01, | . 09 , | . 51, | . 23, | 00 |
| 6 | , | .19, | . 41, | -. 29, | . 06 , | . 09 , | -.35, | -.53, | -.15, | -. 10, | 74 |
| 7 | , | -.04, | -.37, | . 95 , | . 28 , | . 05 , | . 00 , | -. 36, | -. 30, | -. 45, | 24 |
| 8 | , | -.09, | . 14, | . 61, | . 43, | . 29, | -.08, | -. 26 , | . 40 , | -. 75 , | -1.21 |
| Age | , | 2006, | 2007, | 2008, | 2009, | 2010, | 2011, | 2012, | 2013, | 2014, | 2015 |
| 0 |  | No dat | for | fle | at | s age |  |  |  |  |  |
| 1 |  | -.21, | . 05 , | . 38 , | . 57, | . 41, | -2.28, | -.49, | -. 32, | -. 06 , | -. 21 |
| 2 | , | . 57, | 1.16, | . 03, | -. 17, | . 27, | . 22 , | -2.09, | -2.20, | -. 44 , | . 27 |
| 3 | , | -.65, | -. 61, | -. 16, | -.99, | . 39, | . 12, | . 10, | -. 35, | -. 22 , | . 11 |
| 4 |  | -. 02, | -. 66, | . 22, | . 36, | . 47, | -. 27 , | . 19, | . 32, | -. 20 , | . 15 |
| 5 |  | . 05 , | -. 27 , | -. 71, | . 06 , | . 06 , | -. 05 , | -.36, | . 70, | . 28 , | . 78 |
| 6 |  | . 26 , | .15, | . 00 , | -. 28, | . 29 , | -. 31, | -. 41, | . 25 , | . 24, | -. 26 |
| 7 |  | . 32, | . 00 , | . 28, | .19, | . 09, | -. 32, | -. 05, | -.14, | -. 10, | -. 62 |
| 8 |  | -. 50, | -. 68, | . 20 , | -. 15, | .19, | -. 17, | -. 60, | . 79, | . 07 , | . 21 |

## Mean log catchability and standard error of ages with catchability independent of year class strength and constant w.r.t. time

| Age | 1, | 2, | 3 , | 4, | 5, | 6, | 7, |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 8 |  |  |  |  |  |  |  |
| Mean Log q, | -5.0345, | -5.4842, | -5.6978, | -5.6563, | -5.7041, | -5.7964, | -5.7964, |
| 5.7964, |  |  |  |  |  |  |  |
| S.E(Log q) , | .6641, | . 8064 , | . 5220, | . 3637 , | . 4181, | . 3231 , | . 3521 , |
| . 5034, |  |  |  |  |  |  |  |

Table 5.8Faroe haddock 2016 xsa (cont.)

Regression statistics :
Ages with $q$ independent of year class strength and constant w.r.t. time
Age, Slope, t-value, Intercept, RSquare, No Pts, Reg s.e, Mean Q


Mean log catchability and standard error of ages with catchability independent of year class strength and constant w.r.t. time

| Age , | 0, | 1, | 2, | 3, | 4, | 5, |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Mean Log q, | -6.0219, | -5.3341, | -5.8327, | -5.8721, | -6.0498, | -6.2134, |
| S.E (Log q), | .8089, | .5742, | .6749, | .4384, | .7231, | .6814, |

Table 5.8 Faroe haddock 2016 xsa (cont.)

Regression statistics :

Ages with $q$ independent of year class strength and constant w.r.t. time.
Age, Slope, t-value, Intercept, RSquare, No Pts, Reg s.e, Mean Q

| 0, | .89, | .804, | 6.42, | .73, | 23, | .73, | -6.02, |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1, | 1.15, | -1.247, | 4.71, | .77, | 23, | .65, | -5.33, |
| 2, | .93, | .637, | 6.08, | .79, | 23, | .64, | -5.83, |
| 3, | 1.03, | -.373, | 5.78, | .89, | 23, | .46, | -5.87, |
| 4, | .95, | .451, | 6.18, | .79, | 23, | .70, | -6.05, |
| 5, | 1.02, | -.181, | 6.17, | .78, | 23, | .71, | -6.21, |
| 6, | .99, | .071, | 6.45, | .75, | 23, | .76, | -6.44, |

Terminal year survivor and $F$ summaries :
Age 0 Catchability constant w.r.t. time and dependent on age
Year class $=2015$


Weighted prediction :

| Survivors, | Int, | Ext, | N, | Var, | F |
| :--- | :--- | :--- | :--- | :--- | :--- |
| at end of year, | S.e, | s.e, | , | Ratio, |  |
| $51118 .$, | .83, | .00, | 1, | .000, | .000 |

Age 1 Catchability constant w.r.t. time and dependent on age
Year class $=2014$

| Fleet, | Estimated, Survivors, | $\begin{aligned} & \text { Int, } \\ & \text { s.e, } \end{aligned}$ | $\begin{aligned} & \text { Ext, } \\ & \text { s.e, } \end{aligned}$ | Var, <br> Ratio, | N, | Scaled, Weights, | Estimate F |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SUMMER SURVEY | 5536., | . 680, | . 000, | . 00 , | 1, | . 331, | . 000 |
| SPRING SURVEY SHIFTE, | 7573., | . 478 , | . 268 , | . 56 , | 2, | . 669, | . 000 |
| F shrinkage mean | $0 .$, | . 50, |  |  |  | . 000, | . 000 |

Weighted prediction :

| Survivors, | Int, | Ext, | N, | Var, | F |
| :---: | :---: | :---: | :---: | :---: | :---: |
| at end of year, | s.e, | s.e, | Ratio, |  |  |
| $6828 .$, | .39, | .19, | 3, | .478, | .000 |

## Table 5.8Faroe haddock 2016 xsa (cont.)

| Year class $=2013$ |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Fleet, | Estimated, | Int, | Ext, | Var, | N, | Scaled, | Estimated |
| , | Survivors, | s.e, | s.e, | Ratio, | , | Weights, | F |
| SUMMER SURVEY | 8543., | .525, | .159, | . 30, | 2, | .254, | . 040 |
| SPRING SURVEY SHIFTE, | 7056., | . 393 , | .175, | . 44 , | 3, | .454, | . 048 |
| F shrinkage mean , | 8957., | . 50,1, |  |  |  | . 292 , | . 038 |
| Weighted prediction : |  |  |  |  |  |  |  |
| Survivors, Int, | , Ext, | N, Var, | F |  |  |  |  |
| at end of year, s.e, | , s.e, | , Ratio, |  |  |  |  |  |
| 7942., .27, | , .10, | 6, .370, | . 043 |  |  |  |  |
| Age 3 Catchability | constant w | . time and | depend | nt on ag |  |  |  |
| Year class $=2012$ |  |  |  |  |  |  |  |
| Fleet, | Estimated, | Int, | Ext, | Var, | N, | Scaled, | Estimated |
| , | Survivors, | s.e, | s.e, | Ratio, | , | Weights, | F |
| SUMMER SURVEY , | 4106., | . 375 , | .172, | . 46 , | 3, | .303, | . 225 |
| SPRING SURVEY SHIFTE, | 5441., | .295, | .157, | . 53, | 4, | .486, | . 174 |
| F shrinkage mean , | 4021., | .50, , , , |  |  |  | .211, | . 229 |
| Weighted prediction : |  |  |  |  |  |  |  |
| Survivors, Int, | , Ext, | N, Var, | F |  |  |  |  |
| at end of year, s.e, | s.e, | , Ratio, |  |  |  |  |  |
| 4688., .21, | , .10, | 8, .496, | . 200 |  |  |  |  |
| Age 4 Catchability c | constant w.r. | time and d | ependen | t on age |  |  |  |
| Year class $=2011$ |  |  |  |  |  |  |  |
| Fleet, | Estimated, | Int, | Ext, | Var, | N, | Scaled, | Estimated |
| , | Survivors, | s.e, | s.e, | Ratio, | , | Weights, | F |
| SUMMER SURVEY | 701., | . 266 , | .380, | 1.43, | 4, | .442, | . 344 |
| SPRING SURVEY SHIFTE, | 1259., | . 275 , | . 273 , | .99, | 5, | . 374 , | . 206 |
| F shrinkage mean , | 717., | . 50, , , , |  |  |  | .184, | . 337 |


| Survivors, | Int, | Ext, | N, | Var, | F |
| :---: | :---: | :---: | :---: | :---: | :---: |
| at end of year, | s.e, | s.e, | Ratio, |  |  |
| 877., | .18, | .21, | 10, | 1.138, | .284 |

## Table 5.8Faroe haddock 2016 xsa (cont.)



Table 5.8Faroe haddock 2016 xsa (cont.)


Table 5.9 Faroe haddock. Fishing mortality (F) at age.




| . 0000 , | $\begin{aligned} & 0, \\ & .0000, \end{aligned}$ | . 0000 , | . 0000 , | . 0000 , | . 0000 , | . 0000 , | . 0000 , | . 0000 , | . 0000 , |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| . 0006 , | $\begin{aligned} & 1, \\ & .0000, \end{aligned}$ | . 0014, | . 0000 , | . 0000 , | . 0002 , | . 0000 , | . 0000 , | . 0000 , | . 0000 , |
| . 0329, | $\begin{aligned} & 2, \\ & .0280, \end{aligned}$ | . 0908, | . 0108, | . 0010, | . 0004 , | . 0325 , | . 0237, | . 0383, | . 0252 , |
| . 1167, | $\begin{aligned} & 3, \\ & .1695, \end{aligned}$ | . 1878, | . 1128, | . 0547 , | . 0458 , | . 0285 , | . 1374 , | . 4618, | . 1917, |
| . 3896 , | $\begin{aligned} & 4, \\ & .2392 \end{aligned}$ | . 3810 , | . 1815 , | . 1665 , | . 1255 , | . 2025 , | . 1314 , | . 3709, | . 3481 , |
|  | 5, | . 2216 , | . 5273, | . 2116 , | .1913, | . 2750 , | . 2112, | . 2918, | . 3498 , |
| . 2171 , | $\begin{aligned} & .3475, \\ & 6, \end{aligned}$ | . 2871 , | . 7246 , | . 3820 , | . 1409 , | . 2136, | . 2264 , | . 2775 , | . 1383, |
| . 3336 , | $\begin{aligned} & .4163, \\ & 7, \end{aligned}$ | . 1601 , | . 3904 , | . 5760, | . 2721 , | . 1702, | . 2004 , | . 2524 , | . 2991 , |
| . 0853 , | $\begin{aligned} & .2084, \\ & 8, \end{aligned}$ | . 2539, | . 3788, | . 4969 , | . 3303, | . 3954 , | . 0920, | . 2266 , | . 3102 , |
| . 2929 , | $\begin{aligned} & .1720, \\ & 9, \end{aligned}$ | . 2621 , | . 4437 , | . 3690 , | . 2130 , | . 2526 , | . 1730 , | . 2854 , | . 2907 , |
| . 2651 , | .2782, $+g p$, | . 2621 , | . 4437 , | . 3690 , | . 2130 , | . 2526 , | . 1730 , | . 2854 , | . 2907 , |
| . 2651 , | . 2782 , |  |  |  |  |  |  |  |  |
| $\begin{aligned} & \text { FBAR } \\ & .2285, \end{aligned}$ | $\begin{aligned} & 3-7, \\ & .2762, \end{aligned}$ | . 2476 , | . 3873, | . 2782 , | . 1551 , | . 1780, | . 1814 , | . 3309, | . 2654 , |

Table $5.9 \quad$ Faroe haddock. Fishing mortality (F) at age (cont.).

| 1994, | $\begin{gathered} \text { Table } 8 \\ \text { YEAR, } \\ 1995, \end{gathered}$ | $\begin{gathered} \text { Fishing } \\ \text { 1986, } \end{gathered}$ | $\begin{gathered} \text { mortality } \\ 1987, \end{gathered}$ | (F) at 1988, | 1989, | 1990, | 1991, | 1992, | 1993, |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| AGE |  |  |  |  |  |  |  |  |  |
|  | 0 , | . 0000 , | . 0000 , | . 0000 , | . 0000 , | . 0000 , | . 0000 , | . 0000 , | . 0000 , |
| . 0000 , | . 0000 , |  |  |  |  |  |  |  |  |
|  | 1 , | . 0000 , | . 0000 , | . 0000 , | . 0000 , | . 0000 , | . 0000 , | . 0000 , | . 0061 , |
| . 0000 , | $\begin{aligned} & .0000, \\ & 2, \end{aligned}$ | . 0097 , | . 0337 , | . 0394 , | . 0050 , | . 0125, | . 0290 , | . 0167, | .0709, |
| . 0489 , | $\begin{aligned} & .0094, \\ & 3, \end{aligned}$ | . 0941 , | . 0927 , | . 0680 , | .1207, | . 1313, | . 1654 , | . 0745 , | .1662, |
| . 1645 , | $\begin{aligned} & .1053, \\ & 4, \end{aligned}$ | . 2491 , | . 1846 , | .1863, | .1363, | . 2211, | . 2724 , | . 1782 , | .1842, |
| . 2582 , | $\begin{aligned} & .3128, \\ & 5, \end{aligned}$ | . 2598 , | . 2623 , | . 2368 , | . 3328, | . 2335 , | . 2185, | . 2763 , | .1865, |
| . 1484 , | $\begin{aligned} & .3077, \\ & 6, \end{aligned}$ | . 3589 , | . 3082 , | . 3062 , | . 3210, | . 3575 , | . 3178, | . 2604 , | . 2067 , |
| . 2122 , | $\begin{aligned} & .1846, \\ & 7, \end{aligned}$ | . 1573, | . 4748 , | . 2083, | . 5175, | . 4240 , | . 4045 , | . 2681 , | .1979, |
| . 2518, | $\begin{aligned} & .2248, \\ & 8, \end{aligned}$ | . 5179, | . 5848 , | . 2381 , | . 3887 , | . 4633, | . 2690 , | . 2310, | .1588, |
| . 2433, | $\begin{aligned} & .2712, \\ & 9, \end{aligned}$ | . 3104 , | . 3653 , | . 2363 , | . 3414, | . 3420 , | . 2981, | . 2440 , | .1876, |
| .2239, | $\begin{aligned} & .2616, \\ & +g p, \end{aligned}$ | . 3104 , | . 3653 , | . 2363 , | . 3414, | . 3420 , | . 2981, | . 2440 , | .1876, |
| $\begin{gathered} .2239, \\ \text { FBAR } \\ .2070, \end{gathered}$ | $\begin{aligned} & .2616, \\ & 3-7, \\ & .2271, \end{aligned}$ | . 2239, | . 2645 , | . 2011, | . 2857 , | . 2735, | . 2757 , | . 2115, | .1883, |



| . 3250, | $\begin{aligned} & 4, \\ & .2839, \end{aligned}$ | . 1844 , | . 1238 , | . 2914 , | . 2786 , | . 3974, | . 3871, | . 3674 , | .1999, |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| . 3227 , | $\begin{aligned} & 5, \\ & .5263, \end{aligned}$ | . 2866 , | . 3057 , | .1333, | . 2875, | . 3179, | . 3244 , | . 3257 , | . 2633 , |
| . 1880, | $\begin{aligned} & 6, \\ & .1408, \end{aligned}$ | . 5413, | . 4150, | . 2681 , | . 2372 , | . 4381, | . 3634 , | . 3140, | . 3374, |
| . 3779, | $\begin{aligned} & 7, \\ & .1294, \end{aligned}$ | .6995, | .5909, | . 3915, | . 3415 , | . 4334, | .4919, | . 4369, | . 3686 , |
| . 2527 , | $\begin{aligned} & 8, \\ & .2853, \end{aligned}$ | . 3657 , | . 5473, | . 5931, | . 2924 , | . 3784 , | .5499, | . 3018, | . 6516, |
| . 2123, | $\begin{aligned} & 9 \\ & .2909, \end{aligned}$ | .6209, | . 4352 , | . 2943, | . 2545 , | . 2867 , | . 3385, | . 5687, | . 3931 , |
|  | +gp, | .6209, | . 4352 , | . 2943, | . 2545 , | . 2867 , | . 3385, | . 5687, | . 3931 , |
| $\begin{array}{r} .2123, \\ \text { FBAR } \end{array}$ | .2909, $3-7$, | . 3573, | . 3271 , | . 2361, | . 2666 , | . 3790, | . 3777, | . 3128, | . 2670 , |

Table $5.10 \quad$ Faroe haddock. Stock number (N) at age.

| Run title : FAROE HADDOCK (ICES |  |  |  | DIVISION | 5.b) |  | HAD_IND |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| At | 29/04/2016 | 11:08 |  |  |  |  |  |  |  |
|  |  | Terminal Fs derived using XSA (With F shrinkage) |  |  |  |  |  |  |  |
|  | Table 10 | Stock n | umber-at- | ge (start | of year) |  | N | mbers*10 |  |
|  | YEAR, | 1957, | 1958, | 1959, | 1960, | 1961, | 1962, | 1963, | 1964, |
| AGE |  |  |  |  |  |  |  |  |  |
|  | 0 , | 64927, | 54061, | 77651, | 58761, | 71715, | 45399, | 33843, | 30192, |
| 37948, |  |  |  |  |  |  |  |  |  |
|  | 1, | 47944, | 53158, | 44261, | 63576, | 48109, | 58715, | 37170, | 27709, |
| 24719, |  |  |  |  |  |  |  |  |  |
|  | 2 , | 35106, | 39212, | 43417, | 35763, | 51279, | 38537 , | 47362, | 30110, |
| 22644, |  |  |  |  |  |  |  |  |  |
|  | 3 , | 25440, | 25003, | 26445, | 31954, | 23796, | 34806, | 22837, | 26515, |
| 22585, |  |  |  |  |  |  |  |  |  |
|  | 4, | 20280, | 14377, | 13213, | 14717, | 16517, | 12850, | 15850, | 10638, |
| 14961, |  |  |  |  |  |  |  |  |  |
|  | 5, | 5517, | 8965, | 6632, | 6706, | 6028, | 8877, | 5786, | 6278, |
| 5182, |  |  |  |  |  |  |  |  |  |
|  | 6, | 2786, | 3055, | 4284, | 3570, | 3245, | 3182, | 5132, | 2708, |
| 3005, 7 |  |  |  |  |  |  |  |  |  |
|  | 7, | 1377, | 1472, | 1326, | 1839, | 1512, | 1476, | 1332, | 2809, |
| 1204, |  |  |  |  |  |  |  |  |  |
|  | 8, | 585, | 598, | 466, | 433, | 448, | 480, | 423, | 313, |
| 1641, |  |  |  |  |  |  |  |  |  |
|  | 9, | 252, | 274, | 224, | 168, | 135, | 153, | 148, | 114, |
| 77, |  |  |  |  |  |  |  |  |  |
|  | +gp, | 154, | 227, | 106, | 54, | 29, | 46 , | 45, | 16, |
| 14, |  |  |  |  |  |  |  |  |  |
|  | TOTAL, | 204367, | 200401, | 218024, | 217540, | 222811, | 204522, | 169929, | 137402, |
| 133981, |  |  |  |  |  |  |  |  |  |


|  | Table 10 | Stock number-at-age (start of year) |  |  |  |  | Numbers*10**-3 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1974, | $\begin{aligned} & \text { YEAR, } \\ & 1975, \end{aligned}$ | 1966, | 1967, | 1968, | 1969, | 1970, | 1971, | 1972, | 1973, |
|  | AGE |  |  |  |  |  |  |  |  |
|  | 0 , | 81923, | 47768, | 53237, | 23136, | 49621, | 35418, | 78970, | 104847 |
| 83625, | 39127, |  |  |  |  |  |  |  |  |
|  | 1, | 31069, | 67073, | 39109, | 43587, | 18942, | 40627, | 28998, | 64655 |
| 85842, | 68466, |  |  |  |  |  |  |  |  |
|  | 2, | 20203, | 25356, | 54851, | 31975, | 35600, | 15457, | 33213, | 23702 |
| 52333, | 70052, |  |  |  |  |  |  |  |  |
|  | 3. | 17302, | 15563, | 19470, | 39587 , | 24022, | 27583, | 12006, | 26513 |
| 16410, | 37750, |  |  |  |  |  |  |  |  |
|  | 4, | 14613, | 11176, | 10566, | 12234, | 25590, | 15275, | 18608, | 6442 |
| 14092, | 10812, |  |  |  |  |  |  |  |  |
|  | 5, | 7604, | 7617 , | 6798, | 6106, | 5884, | 14996, | 8229, | 11454 |
| 4152, | 7946, |  |  |  |  |  |  |  |  |
|  | 6 , | 2937, | 3774 , | 4622, | 4187, | 3583, | 3348, | 9322, | 4288 |
| 6849 , | 2992, |  |  |  |  |  |  |  |  |
|  | 7 , | 1366, | 1398, | 1800, | 2403, | 2084, | 1682, | 1572, | 6572 |
| 2680, | 4724, |  |  |  |  |  |  |  |  |
|  | 8 , | 377 , | 449, | 574, | 638, | 860, | 712, | 595, | 657 |
| 4427, | 1772, |  |  |  |  |  |  |  |  |
|  | 9. | 127, | 146, | 189, | 262, | 180, | 409, | 382, | 325 |
| 402, | 3141, |  |  |  |  |  |  |  |  |
|  | +gp, | 21, | 36, | 33, | 45, | 26, | 281, | 319, | 52 |
| 865,271678 | $1396,$ |  |  |  |  |  |  |  |  |
|  | TOTAL, | 177542, | 180355, | 191249, | 164160, | 166393, | 155787, | 192213, | 249509, |
|  | 248178, |  | 180355, |  |  |  |  |  |  |

Terminal Fs derived using XSA (With F shrinkage)
YEAR, 1976, 1977, 1978, 1979, 1980, 1981, 1982, 1983,

| 39475, | $\begin{aligned} & 0, \\ & 14060, \end{aligned}$ | 52360, | 4153, | 7376, | 5208, | 23620, | 29255, | 60791, | 58809, |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 48148, | $\begin{aligned} & 1, \\ & 32319, \end{aligned}$ | 32035, | 42868, | 3400, | 6039, | 4264, | 19339, | 23952, | 49772, |
| 40750, | $\begin{aligned} & 2, \\ & 39398, \end{aligned}$ | 55970, | 26192, | 35098, | 2784, | 4944, | 3491, | 15833, | 19610, |
| 15656, | $\begin{aligned} & 3, \\ & 32282, \end{aligned}$ | 50715, | 41847, | 21213, | 28707, | 2278, | 3918, | 2791, | 12475, |
| 8432, | $\begin{gathered} 4, \\ 11406, \end{gathered}$ | 23712, | 34412, | 30607 , | 16443, | 22452, | 1813, | 2796, | 1440, |
| 832, | 5, | 6955, | 13262, | 23498, | 21215, | 11874, | 15012, | 1301, | 1580, |
|  | 6 , | 5265, | 4562, | 6408, | 15570, | 14345, | 7385, | 9951, | 796, |
| 912, | $\begin{aligned} & 548, \\ & 7, \end{aligned}$ | 2226, | 3235, | 1810, | 3581, | 11073, | 9486, | 4821, | 6173, |
| 567, | $\begin{aligned} & 535, \\ & 8, \end{aligned}$ | 3549, | 1553, | 1792, | 833, | 2233, | 7647, | 6356, | 3067, |
| 3747, | 927, | 1237, | 2254, | 870, | 893, | 490, | 1231, | 5711, | 4149, |
| 1841, | 2289, |  |  |  |  |  |  |  |  |
| 4566, | $\begin{aligned} & +g p, \\ & 4400, \end{aligned}$ | 1515, | 2613, | 1109, | 424, | 423, | 249, | 946, | 3460, |
| 164927, | $\begin{aligned} & \text { TOTAL, } \\ & 142340, \end{aligned}$ | 235538, | 176951, | 133181, | 101696, | 97996, | 98825, | 135250, | 161330, |

Table $5.10 \quad$ Faroe haddock. Stock number (N) at age (cont.).



|  | Table 10 | Stock | mber-at | ge (st | of ye |  |  | umbers* | **-3 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2015, | $\begin{aligned} & \text { YEAR, } \\ & 2016, \end{aligned}$ | 2006, | 2007, | 2008, | 2009, | 2010, | 2011, | 2012, | 2013, | 2014, |
|  | AGE |  |  |  |  |  |  |  |  |  |
| 62435, | $0,$ $0,$ | 3966, | 3432, | 6301, | 17390, | 6731, | 4097, | 13129, | 15105, | 10186, |
| 8340, | $\begin{gathered} 1, \\ 51118, \end{gathered}$ | 3769, | 3247, | 2810, | 5159, | 14238, | 5511, | 3354, | 10749, | 12367, |
| 10125, | $\begin{array}{r} 2, \\ 6828, \end{array}$ | 7585, | 3085, | 2659, | 2295, | 4224, | 11657, | 4512, | 2746, | 8801, |
| 6990, | $\begin{aligned} & 3, \\ & 7942, \end{aligned}$ | 6833, | 5987, | 2457, | 2117, | 1854, | 3106, | 9390, | 3687, | 2173, |
| 1422, | $\begin{aligned} & 4, \\ & 4688, \end{aligned}$ | 16836, | 5191, | 4013, | 1827, | 1436, | 1116, | 1844, | 6819, | 2557, |
| 1512, | 5, 877, | 17514, | 11463, | 3755, | 2455, | 1132, | 790, | 620, | 1045, | 4572, |
| 2710, | $\begin{aligned} & 6, \\ & 732, \end{aligned}$ | 14338, | 10766, | 6913, | 2690, | 1508, | 675, | 468, | 367, | 658, |
| 446, | $\begin{gathered} 7, \\ 1928, \end{gathered}$ | 7200, | 6832, | 5820, | 4329, | 1738, | 797, | 384, | 280, | 214, |
| 120, | 8, 321, | 491, | 2929, | 3098, | 3221, | 2519, | 922, | 399, | 203, | 158, |
| 101, | $\begin{aligned} & 9, \\ & 74, \end{aligned}$ | 151, | 279, | 1387, | 1402, | 1969, | 1413, | 436, | 241, | 87 , |
| 87 , | $\begin{gathered} \text { +gp, } \\ \text { 115, } \end{gathered}$ | 165, | 28, | 168, | 235, | 701, | 715, | 287, | 401, | 276, |
| 94289, | $\begin{aligned} & \text { TOTAL, } \\ & 74622, \end{aligned}$ | 78847, | 53237, | 39381, | 43120 , | 38048 , | 30797, | 34822, | 41644, | 42048, |

Table 5.11. Faroe haddock. Stock summary of the 2016 VPA.


Table 5.12. Management options table INPUT DATA descriptions.
Stock size

The stock in numbers 2016 is taken directly from the 2016 XSA. The yearclass 2015 at age 2 (in 2017) is estimated from the 2016 XSA age 1 applying a natural mortality of 0.2 in forward calculation of the number using the standard VPA equation. The yearclass 2016 at age 2 (in 2018) is estimated as the geomean of the numbers-at-age 2 since 2005.

| AGE | 2016 | 2017 | 2018 |
| :---: | :---: | :---: | :---: |
| 2 | 6828 | 41852 | 5930 |
| 3 | 7942 |  |  |
| 4 | 4688 |  |  |
| 5 | 877 |  |  |
| 6 | 732 |  |  |
| 7 | 1928 |  |  |
| 8 | 321 |  |  |
| 9 | 74 |  |  |
| $10+$ | 115 |  |  |

Numbers in thousands (predicted values rounded).
Proportion mature at age
The proportion mature at age in 2016 is estimated as the average of the observed data in 2015 and 2016. For 2017 and 2018, the average of 2014-2016 is used.

| AGE | 2016 | 2017 | 2018 |
| :---: | :---: | :---: | :---: |
| 2 | 0.18 | 0.18 | 0.18 |
| 3 | 0.89 | 0.87 | 0.87 |
| 4 | 1.00 | 1.00 | 1.00 |
| 5 | 1.00 | 1.00 | 1.00 |
| 6 | 1.00 | 1.00 | 1.00 |
| 7 | 1.00 | 1.00 | 1.00 |
| 8 | 1.00 | 1.00 | 1.00 |
| 9 | 1.00 | 1.00 | 1.00 |
| $10+$ | 1.00 | 1.00 | 1.00 |

Table 5.12. Management options table-INPUT DATA descriptions (cont.).

Catch\&Stock weights at age

Catch and stock weights at age for all ages and for each of the years 2016-2018 are simply the average of the estimated point-values for 2013-2015 not re-scaled to 2015 since most weights have been fluctuating without any trend during the last 3 years ( no model was available to predict future mean weights at age).

| AGE | 2016 | 2017 | 2018 |
| :---: | :---: | :---: | :---: |
| 2 | 0.552 | 0.552 | 0.552 |
| 3 | 0.874 | 0.874 | 0.874 |
| 4 | 1.122 | 1.122 | 1.122 |
| 5 | 1.486 | 1.486 | 1.486 |
| 6 | 1.711 | 1.711 | 1.711 |
| 7 | 2.031 | 2.031 | 2.031 |
| 8 | 1.920 | 1.920 | 1.920 |
| 9 | 1.977 | 1.977 | 1.977 |
| $10+$ | 2.070 | 2.070 | 2.070 |

## Exploitation pattern

The exploitation pattern 2016 is estimated like last year as the average fishing mortality matrix in the 3 preceding years (2013-2015) from the final VPA in 2016, without re-scaling to the terminal year (2015) since fishing mortalities have been fluctuating without any general trend during the last 3 years; the same exploitation pattern was used for all 3 years.

| AGE | 2016 | 2017 | 2018 |
| :---: | :---: | :---: | :---: |
| 2 | 0.0357 | 0.0357 | 0.0357 |
| 3 | 0.1965 | 0.1965 | 0.1965 |
| 4 | 0.2696 | 0.2696 | 0.2696 |
| 5 | 0.3708 | 0.3708 | 0.3708 |
| 6 | 0.2221 | 0.2221 | 0.2221 |
| 7 | 0.2920 | 0.2920 | 0.2920 |
| 8 | 0.3965 | 0.3965 | 0.3965 |
| 9 | 0.2988 | 0.2988 | 0.2988 |
| $10+$ | 0.2988 | 0.2988 | 0.2988 |

Table 5.13 Faroe haddock. Management option table - Input data

MFDP version 1
Run: jr1
Time and date: 15:31 20/04/2016
Fbar age range: 3-7

| 2016 |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Age | N | M | Mat | PF | PM | SWt | Sel | CWt |
| 2 | 6828 | 0.2 | 0.18 | 0 | 0 | 0.552 | 0.036 | 0.552 |
| 3 | 7942 | 0.2 | 0.89 | 0 | 0 | 0.874 | 0.197 | 0.874 |
| 4 | 4688 | 0.2 | 1 | 0 | 0 | 1.222 | 0.270 | 1.222 |
| 5 | 877 | 0.2 | 1 | 0 | 0 | 1.486 | 0.371 | 1.486 |
| 6 | 732 | 0.2 | 1 | 0 | 0 | 1.711 | 0.222 | 1.711 |
| 7 | 1928 | 0.2 | 1 | 0 | 0 | 2.031 | 0.292 | 2.031 |
| 8 | 321 | 0.2 | 1 | 0 | 0 | 1.920 | 0.397 | 1.920 |
| 9 | 74 | 0.2 | 1 | 0 | 0 | 1.977 | 0.299 | 1.977 |
| 10 | 115 | 0.2 | 1 | 0 | 0 | 2.070 | 0.299 | 2.070 |
| 2017 |  |  |  |  |  |  |  |  |
| Age | N | M | Mat | PF | PM | SWt | Sel | CWt |
| 2 | 41852 | 0.2 | 0.18 | 0 | 0 | 0.552 | 0.036 | 0.552 |
| 3 |  | 0.2 | 0.87 | 0 | 0 | 0.874 | 0.197 | 0.874 |
| 4 |  | 0.2 | 1 | 0 | 0 | 1.222 | 0.270 | 1.222 |
| 5 |  | 0.2 | 1 | 0 | 0 | 1.486 | 0.371 | 1.486 |
| 6 |  | 0.2 | 1 | 0 | 0 | 1.711 | 0.222 | 1.711 |
| 7 |  | 0.2 | 1 | 0 | 0 | 2.031 | 0.292 | 2.031 |
| 8 |  | 0.2 | 1 | 0 | 0 | 1.920 | 0.397 | 1.920 |
| 9 |  | 0.2 | 1 | 0 | 0 | 1.977 | 0.299 | 1.977 |
| 10 |  | 0.2 | 1 | 0 | 0 | 2.070 | 0.299 | 2.070 |
| 2018 |  |  |  |  |  |  |  |  |
| Age | N | M | Mat | PF | PM | SWt | Sel | CWt |
| 2 | 5930 | 0.2 | 0.18 | 0 | 0 | 0.552 | 0.036 | 0.552 |
| 3 |  | 0.2 | 0.87 | 0 | 0 | 0.874 | 0.197 | 0.874 |
| 4 |  | 0.2 | 1 | 0 | 0 | 1.222 | 0.270 | 1.222 |
| 5 |  | 0.2 | 1 | 0 | 0 | 1.486 | 0.371 | 1.486 |
| 6 |  | 0.2 | 1 | 0 | 0 | 1.711 | 0.222 | 1.711 |
| 7 |  | 0.2 | 1 | 0 | 0 | 2.031 | 0.292 | 2.031 |
| 8 |  | 0.2 | 1 | 0 | 0 | 1.920 | 0.397 | 1.920 |
| 9 |  | 0.2 | 1 | 0 | 0 | 1.977 | 0.299 | 1.977 |
| 10 |  | 0.2 | 1 | 0 | 0 | 2.070 | 0.299 | 2.070 |

Input units are thousands and kg - output in tonnes

Table $5.14 \quad$ Faroe haddock. Management option table - Results
MFDP version 1
Run: jr1
Index file 20/04/2016
Time and date: 15:31 20/04/2016
Fbar age range: 3-7

2016

| Biomass | SSB | FMult | FBar | Landings |
| ---: | ---: | ---: | ---: | ---: |
| 23910 | 20056 | 1 | 0.2702 | 4251 |


| 2017 <br> Biomass |  |  |  | 2018 |  |  |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 43375 | 23818 | FMult | FBar | Landings | Biomass | SSB |
|  | 23818 | 0.1 | 0 | 0 | 53195 | 46619 |
|  | 23818 | 0.2 | 0.054 | 597 | 52532 | 45970 |
|  | 23818 | 0.3 | 0.0811 | 1178 | 51887 | 45338 |
|  | 23818 | 0.4 | 0.1081 | 2297 | 51257 | 44723 |
|  | 23818 | 0.5 | 0.1351 | 2835 | 50043 | 44123 |
|  | 23818 | 0.6 | 0.1621 | 3359 | 49461 | 42968 |
|  | 23818 | 0.7 | 0.1891 | 3870 | 48892 | 42412 |
|  | 23818 | 0.8 | 0.2161 | 4368 | 48337 | 41871 |
|  | 23818 | 0.9 | 0.2432 | 4854 | 47795 | 41342 |
|  | 23818 | 1 | 0.2702 | 5328 | 47267 | 40827 |
|  | 23818 | 1.1 | 0.2972 | 5790 | 46751 | 40325 |
|  | 23818 | 1.2 | 0.3242 | 6240 | 46247 | 39835 |
|  | 23818 | 1.3 | 0.3512 | 6680 | 45756 | 39356 |
|  | 23818 | 1.4 | 0.3783 | 7109 | 45276 | 38890 |
|  | 23818 | 1.5 | 0.4053 | 7527 | 44807 | 38434 |
|  | 23818 | 1.6 | 0.4323 | 7936 | 44350 | 37990 |
|  | 23818 | 1.7 | 0.4593 | 8335 | 43903 | 37556 |
|  | 23818 | 1.8 | 0.4863 | 8724 | 43466 | 37132 |
|  | 23818 | 1.9 | 0.5134 | 9104 | 43039 | 36719 |
|  | 23818 | 2 | 0.5404 | 9476 | 42622 | 36315 |

Input units are thousands and kg - output in tonnes

Table 5.15
Faroe haddock. Long-term Prediction - Input data
MFYPR version 1
Run: jr2
Index file 20/04/2016
Time and date: 16:20 20/04/2016
Fbar age range: 3-7

| Age | M | Mat | PF | PM | SWt | Sel | CWt |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 2 | 0.2 | 0.064 | 0 | 0 | 0.569 | 0.036 | 0.569 |
| 3 | 0.2 | 0.527 | 0 | 0 | 0.809 | 0.197 | 0.809 |
| 4 | 0.2 | 0.926 | 0 | 0 | 1.075 | 0.270 | 1.075 |
| 5 | 0.2 | 0.993 | 0 | 0 | 1.376 | 0.371 | 1.376 |
| 6 | 0.2 | 0.999 | 0 | 0 | 1.650 | 0.222 | 1.650 |
| 7 | 0.2 | 1.000 | 0 | 0 | 1.913 | 0.292 | 1.913 |
| 8 | 0.2 | 1.000 | 0 | 0 | 2.117 | 0.397 | 2.117 |
| 9 | 0.2 | 1.000 | 0 | 0 | 2.333 | 0.299 | 2.333 |
| 10 | 0.2 | 1.000 | 0 | 0 | 2.629 | 0.299 | 2.629 |

Weights in kilograms

## Table 5.16

Faroe haddock. Long-term Prediction - Results
MFYPR version 1
Run: jr2
Time and date: 16:20 20/04/2016
Yield per results

| FMult | Fbar | CatchNos | Yield | StockNos | Biomass | SpwnNosJan | SSBJan | SpwnNosSpwn | SSBSpwn |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 0 | 0 | 0 | 0 | 5.5167 | 8.2937 | 4.1398 | 7.3883 | 4.1398 | 7.3883 |
| 0.1 | 0.027 | 0.1035 | 0.1726 | 5.0011 | 7.0969 | 3.6269 | 6.1942 | 3.6269 | 6.1942 |
| 0.2 | 0.054 | 0.1831 | 0.2925 | 4.605 | 6.2018 | 3.2336 | 5.3018 | 3.2336 | 5.3018 |
| 0.3 | 0.0111 | 0.2463 | 0.378 | 4.2911 | 5.5115 | 2.9224 | 4.614 | 2.9224 | 4.614 |
| 0.4 | 0.1081 | 0.2976 | 0.4402 | 4.0362 | 4.9658 | 2.6701 | 4.0708 | 2.6701 | 4.0708 |
| 0.5 | 0.1351 | 0.3403 | 0.4863 | 3.8248 | 4.5256 | 2.4613 | 3.6331 | 2.4613 | 3.6331 |
| 0.6 | 0.1621 | 0.3763 | 0.5208 | 3.6467 | 4.1643 | 2.2857 | 3.2743 | 2.2857 | 3.2743 |
| 0.7 | 0.1891 | 0.4071 | 0.547 | 3.4943 | 3.8634 | 2.1359 | 2.9758 | 2.1359 | 2.9758 |
| 0.8 | 0.2161 | 0.4338 | 0.567 | 3.3625 | 3.6096 | 2.0065 | 2.7243 | 2.0065 | 2.7243 |
| 0.9 | 0.2432 | 0.4572 | 0.5824 | 3.2472 | 3.3931 | 1.8936 | 2.5101 | 1.8936 | 2.5101 |
| 1 | 0.2702 | 0.4779 | 0.5943 | 3.1454 | 3.2066 | 1.7942 | 2.3259 | 1.7942 | 2.3259 |
| 1.1 | 0.2972 | 0.4963 | 0.6035 | 3.0548 | 3.0445 | 1.7061 | 2.166 | 1.7061 | 2.166 |
| 1.2 | 0.3242 | 0.5129 | 0.6107 | 2.9737 | 2.9024 | 1.6272 | 2.0261 | 1.6272 | 2.0261 |
| 1.3 | 0.3512 | 0.5278 | 0.6162 | 2.9005 | 2.777 | 1.5564 | 1.9029 | 1.5564 | 1.9029 |
| 1.4 | 0.3783 | 0.5414 | 0.6205 | 2.8341 | 2.6656 | 1.4922 | 1.7937 | 1.4922 | 1.7937 |
| 1.5 | 0.4053 | 0.5538 | 0.6238 | 2.7736 | 2.5661 | 1.434 | 1.6962 | 1.434 | 1.6962 |
| 1.6 | 0.4323 | 0.5652 | 0.6263 | 2.7181 | 2.4767 | 1.3808 | 1.6089 | 1.3808 | 1.6089 |
| 1.7 | 0.4593 | 0.5757 | 0.6282 | 2.6672 | 2.3959 | 1.332 | 1.5302 | 1.332 | 1.5302 |
| 1.8 | 0.4863 | 0.5854 | 0.6296 | 2.62011 | 2.3227 | 1.287 | 1.4589 | 1.287 | 1.4589 |
| 1.9 | 0.5134 | 0.5944 | 0.6306 | 2.5765 | 2.2559 | 1.2456 | 1.3941 | 1.2456 | 1.3941 |
| 2 | 0.5404 | 0.6028 | 0.6312 | 2.5359 | 2.1949 | 1.2071 | 1.335 | 1.2071 | 1.335 |


| Reference point | F multiplier | Absolute $F$ |
| :--- | ---: | ---: |
| Fbar(3-7) | 1 | 0.2702 |
| FMax | 2.2356 | 0.604 |
| F0.1 | 0.7341 | 0.1984 |
| F35\%SPR | 0.8628 | 0.2331 |
| Flow | -99 |  |
| Fmed | 0.812 | 0.2194 |
| Fhigh | 3.0515 | 0.8245 |

Weights in kilograms

Table $5.17 \quad$ Haddock biomass (age 2+) 1914-2015 in tons. Year label is sum of first row and first column.

|  | 1900 | 1925 | 1950 | 1975 | 2000 |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 0 |  | 51433 | 81427 | 138898 | 107887 |
| 1 |  | 62983 | 67514 | 143617 | 143907 |
| 2 |  | 61870 | 66118 | 121035 | 150576 |
| 3 |  | 49631 | 73973 | 120568 | 137270 |
| 4 |  | 41313 | 75493 | 99492 | 124158 |
| 5 |  | 38518 | 88337 | 87629 | 88241 |
| 6 |  | 38412 | 91960 | 78954 | 64448 |
| 7 |  | 41379 | 90264 | 68298 | 46441 |
| 8 |  | 32637 | 92975 | 63951 | 33351 |
| 9 |  | 36717 | 89969 | 100634 | 24503 |
| 10 |  | 42386 | 96422 | 93926 | 20905 |
| 11 |  | 48161 | 93296 | 98457 | 18478 |
| 12 |  | 63897 | 98262 | 87574 | 16375 |
| 13 |  | 63738 | 90204 | 77340 | 16814 |
| 14 | 68122 | 50969 | 75561 | 69437 | 18411 |
| 15 | 60228 | 67182 | 71884 | 53438 | 25984 |
| 16 | 59115 | 84454 | 68774 | 38613 |  |
| 17 | 58850 | 113753 | 77101 | 28972 |  |
| 18 | 145265 | 103316 | 87971 | 28639 |  |
| 19 | 195704 | 97594 | 94878 | 27298 |  |
| 20 | 92229 | 90918 | 92142 | 86938 |  |
| 21 | 101713 | 126946 | 92929 | 111696 |  |
| 22 | 63831 | 103104 | 91506 | 106263 |  |
| 23 | 61076 | 91342 | 98976 | 91219 |  |
| 24 | 44757 | 80374 | 116873 | 78812 |  |

### 5.18 Figures



Figure 5.1. Haddock in ICES Division 5.b. Landings by all nations 1904-2015. Horisontal line average for the whole period.


Figure 5.2. Faroe haddock. Cumulative Faroese landings from 5.b.


Figure 5.3. Faroe haddock. Contribution (\%) by fleet to the total Faroese landings 2015.

Faroe Haddock LN(catch at age in numbers) for YC's 1948 onwards


Figure 5.4.


Figure 5.5. Faroe haddock. Mean weight at age (2-7).

Faroe Haddock - Maturity at age 1982-2015


Figure 5.6. Faroe haddock. Maturity-at-age since 1982. Running 3-years average of survey observations.


Fig-
ure 5.7. Commercial cpue's for Pairtrawlers > $\mathbf{1 0 0 0} \mathbf{H P}$ and longliners $>100 \mathrm{HP}$.


Figure 5.8. Faroe haddock. cpue (kg/trawlhour) in the spring and summer surveys.



Figure 5.9. Distribution of Faroe haddock catches in the spring survey (page above) and in the summer survey (this page).


Figure 5.10. Faroe haddock. LN (c@age in numbers) in the spring survey.

## Faroe Haddock Summer Survey



Figure 5.11. Faroe haddock. LN (c@age in numbers) in the summer survey.

Faroe haddock. Spring survey log q residuals.


Faroe haddock. Summer survey log q residuals.


Figure 5.12. Faroe haddock survey $\log q$ residuals.


Figure 5.13. Faroe haddock. Retrospective analysis on the 2015 XSA.

### 6.1 Stock description and management units.

See the stock annex.

### 6.2 Scientific data

### 6.2.1 Trends in landings and fisheries

Nominal landings of saithe from Faroese grounds (Division 5.b) have varied cyclically between 10000 t and 68000 t since 1961. After a third high of about 60000 t in 1990, landings declined steadily to 20000 t in 1996. Since then landings have increased to 68 000 tonnes in 2005 (Table 6.2.1.1, Figure 6.2.1.1) but has declined to 57000 tonnes in 2008 and 2009. After a substantial drop in landings in 2011 which was the lowest observed since 1999 ( 33000 t ) landings increased by $20 \%$ in 2012 up to 35000 t . Since 2011 landings have remained below historical average ( 37000 t.) The total tonnage in 2015 is 25000 t .

Since the introduction of the 200 miles EEZ in 1977, the saithe fishery has been prosecuted mostly by Faroese vessels. The principal fleet consists of large pairtrawlers $(>1000 \mathrm{HP})$, which have a directed fishery for saithe, about $50-77 \%$ of the reported landings in 1992-2011 (Table 6.2.1.2). The smaller pairtrawlers ( $<1000 \mathrm{HP}$ ) and single trawlers ( $400-1000 \mathrm{HP}$ ) have a more mixed fishery and they have accounted for about $10-20 \%$ of the total landings of saithe in the 1997-2011 period while the percentage of total landings by large single trawlers ( $>1000 \mathrm{HP}$ ) has declined drastically to just $1 \%$. Historically the catch composition by the pairtrawler fleet has accounted for about $75 \%$ of the total tonnage for saithe but since 2007 it has increased gradually up to $93 \%$ in 2015 due mainly to the gear-shifting of single-trawlers to pair-trawling. The share of catches by the jigger fleet was about $8 \%$ in the 1985-1998 period but has decreased to less than $0.5 \%$ since 2000 and it now accounts for only $2 \%$ of the total domestic landings for saithe in 2014. Foreign catches that have been reported to the Faroese Authorities but not officially reported to ICES are also included in the Working Group estimates. Catches in Subdivision IIa, which lies immediately north of the Faroes, have also been included. Little or no discarding is thought to occur in this fishery. Effort (measured as the ratio of nominal to used fishing days by the pair-trawl fleet segment) has diminished considerably in recent years. In the 2013/2014 fishing year only 58\% and $41 \%$ of fishing days were utilized in the inner and outer areas respectively while in the $2014 / 2015$ fishing year these ratios went up to $97 \%$ and $74 \%$, i.e. $29 \%$ of fishing days were not used in the last finished year season.
Cumulative landings of saithe for the domestic fleets since 2000 are shown in Figure 6.2.1.2. The period from 2011 to 2015 are among the poorest in the time-series. The progression of landings in the first three months of 2016 is below monthly averages and suggests a poor fishing year.

### 6.2.2 Catch-at-age

Catch-at-age is based on length, weight and otoliths samples from Faroese landings of small and large single and pairtrawlers, and landing statistics by fleet provided by the Faroese Authorities. Catch-at-age is calculated for each fleet by four-month periods and the total is raised by the foreign catches. Minor adjustments were made to the catch-at-age matrix for 2014 due to revised final catch statistics (Tables 6.2.2.1 and
6.2.2.2). Most of the age-disaggregated catch matrix is comprised of catches of the pairtrawl fleet. Since 2010 catch numbers is mostly comprised of age groups 4 to 6 whereas in the period from 2005 to 2009 it is mainly composed of age groups 4 to 8 . Numbers of 3 and 6 -years old were higher in 2015 than in 2014. While catches of 4 and 5 -years old saithe decreased from 2323 and 3143 thous. to 2269 and 2577 thous. respectively in 2015. Numbers of age 3 (recruiting age) in 2015 (2135 thous.) is the largest since 2010 (2324 thous.)

The sampling program and sampling intensity in 2015 as well as the approach used in compiling catch numbers is the same as in preceding years. Sampling levels of catches in 2014 was $8.9 \%$ and it went up to $9.9 \%$ in 2015 (Table 6.2.2.3.) The average amount sampled per tonnes landed since 2000 is $6.2 \%$.

### 6.2.3 Weight at age

Mean weights at age have varied by a factor of about 2 during since 1961. Mean weights at age were generally high during the early 1980s and they subsequently decreased from the mid-1980s to the early 1990s (Table 6.2.3.1 and Figure 6.2.3.1). Mean weights increased again in the period 1992-96 but have shown a general decrease thereafter. With the exception of 3-years old saithe all age groups were showing signs of increasing size since 2006. In 2011 age classes 4 to 6 were close or at long-term average. From 2012 to 2014 weight was below average for age groups 3 to 7 . Age classes 7 and older are in 2015 above mean values whereas younger age groups (3-5) are lower than average. Mean weight of the 2012 year class (age 3 in 2015) is estimated at 0.932 kg . which is the lowest ever observed in the time-series. On the other hand weight for 9 -years old saithe ( 6.715 kg .) is the largest since 1985. Mean weights at age in the stock are assumed equal to those in the catch.

### 6.2.4 Maturity-at-age

Maturity-at-age data from the spring survey is available from 1983 onward (Steingrund, 2003.) Due to poor sampling in 1988 the proportion mature for that year was calculated as the average of the two adjacent years. At the 2012 working group a model using maturity-at-age from the Faroese groundfish spring survey was implemented to derive smoothed trends in maturity by age and year. The fitting was done locally and the smoothing level was chosen as a trade-off between retaining the trend in maturities and reducing the data noise. For 1962-1982 the average maturity of predicted ogives of the 1983-2011 period was used (Table 6.2.4.1 and Figure 6.2.4.1.) Maturity ogives were low from the early and mid-1990s up to 2001 where they began to rise considerably and are above historical average since 2012.

Faroe saithe begins to mature at 3 years old, approximately $20 \%$ are mature at age 4, $50 \%$ at 5 years old and $100 \%$ are mature at age 9 and onwards.

### 6.2.5 Indices of stock size

### 6.2.5.1 Surveys

There are two annual groundfish surveys conducted in Faroese waters. The spring survey series (FGFS1) are available since 1994, while the summer survey (FGFS2) was initiated in 1996. The design for both bottom-trawl surveys is depth stratified with randomized stations covering the Faroe Plateau area. The total number of stations in the summer and spring is 100 and 200 respectively. Effort is recorded in terms of
minutes towed approximately 60 min . Large proportion of saithe is caught in relatively few hauls and the interannual variability of these hauls is considerable.

Survey catch rates (kg per hour), length composition and age-disaggregated indices are presented in figures 6.2.5.1.1 to 6.2.5.1.5. Both surveys suggest low abundances of saithe in mid- and late 1990's and increasing numbers from 2001 to 2005 although they differ in the order of this magnitude. Since 2007 the indices show that the saithe stock is at low levels while there are indications of a slight upward trend since 2011. Both surveys agreed not only in the direction but also in the magnitude of this positive trend. The most recent estimate of the spring survey suggest a slightly decrease in stock biomass in 2016 but given the uncertainty associated with the index the point estimate ought to be taken with cautioagreement between survey indices and the commercial series used in the model tuning is good. Both survey at age numbers agreed in the lack of year classes present in the stock since 2007. The spring index suggests that the 2002 year class (age 3 in 2015) is quite strong, which is confirmed by very abundant individuals of the same year class in 2016. Year-class strength in the summer index also suggests that the 2012 year class is strong.

Given the extreme schooling behaviour of saithe the internal consistency in the spring survey measured by the correlation of numbers in the data matrix for the same year class is reasonably good, with $\mathrm{R}^{2}$ close to 0.85 for the best defined age groups and below $\mathrm{R}^{2}=0.3$ for other age classes (Figure 6.2.5.1.6). Internal consistency in the age-disaggregated fall survey is displayed in figure 6.2.5.1.7. In terms of internal consistency the spring survey outperforms the fall survey.

### 6.2.5.2 Commercial cpue

The cpue series that has been used in the assessment since 2000 was introduced in 1998 (ICES C.M. 1998/ACFM:19), and consists of saithe catch-at-age and effort in hours, referred to as the pairtrawler series. A GLM model and a survey spatial scaling factor is used to standardized the cpue series (Stock Annex B.4., Benchmark report, WKROUND 2010.) The benchmark working group regarded this novel approach to developing the commercial series as reasonable (Benchmark report, WKROUND 2010.) Predicted annual cpues derived from this approach suggest that stock abundance was low in the 1990s and increased subsequently in the 2000's and a sharp downward trend from 2006 to 2011. Since 2012 the predicted cpue has remained remarkably stable at approximately $384 \mathrm{~kg} /$ hour (Figure 6.2.5.1.1)
The correlation between predicted cpue and the spring and summer surveys is $\mathrm{R}^{2}=0.55$ and $R^{2}=0.70$ respectively. The agreement between the survey indices measured by their correlation is estimated at $\mathrm{R}^{2}=0.36$.

The age composition indicates that the pair-trawl fleet targets mostly age groups 4 to 6. (Figure 6.2.5.2.1) There is a good agreement between age-disaggregated indices in the commercial index and indices of the same year class one year later (Figure 6.2.5.2.2) as measured by $\mathrm{R}^{2}>0.35$ for all age classes.

### 6.2.5.3 Information from the fishing industry

No additional information beyond the landings from the commercial fleet was presented for incorporation in the assessment.

### 6.3 Methods

The assessment model adopted at the benchmark assessment in 2010 is described in the Stock annex (Section C) and in the benchmark report (WKROUND 2010.) The 2010 XSA was calibrated with the standardized pairtrawlers with catchability independent of stock size for all ages, catchability independent of age for ages $\geq 8$, the shrinkage of the $S E$ of the mean $=2.0$, and no time tapered weighting. The tunings series used are shown in Table 6.3.1. Commercial catch-at age data (ages 3-14+, years 1961-2013) were calibrated in the XSA model using the commercial pair-trawl fleet (ages 3-11, years 1995-2013). XSA model diagnostics of the spaly run is presented in Table 6.3.2. Patterns in log-catchability residuals from the XSA model are relatively random but with large positive blocks in 2006-2010 for 3 to 4 age classes (Figure 6.3.1.). Residuals from a separable statistical model predicting catch numbers-at-age and survey data and modelling catchability, selectivity over 4 distinct periods and including a stock-recruitment relationship are also presented (Figure 6.3.3)

### 6.4 Reference points

### 6.4.1 Biological reference points and MSY framework

In 2014 at the WKMSYREF2 workshop the EqSim simulation framework was used to explore candidates to FmsY. The work was presented at the NWWG meeting in 2014 and the results agree with the previous simulations (see above) in that estimates of $\mathrm{F}_{\mathrm{MS}}$ are in the range of $\mathrm{F}_{\text {ms }}=0.30$ and $\mathrm{F}_{\text {ms }} \mathrm{y}=0.34$ and not as the present level of $\mathrm{F}_{\text {мsy }}=0.28$. In the 2014 meeting ACOM adopted the EqSim framework and agreed to set $\mathrm{FmSY}=0.30$, which agrees with the estimation of Fmed $=0.31$. Below it is an excerpt from the WKMSYREF2 report:

The EqSim framework fits three stock-recruit functions (Ricker, Beverton-Holt and Hockey-stick) on the bootstrap samples of the stock and recruit pairs from which approximate joint distributions of the model parameters can be made. The result of this is projected forward for a range of F's values and the last 50 years are retained to calculate summaries. Each simulation is run independently from the distribution of model and parameters. Error is introduced within the simulations by randomly generating process error about the constant stock recruit fit, and by using historical variation in maturity, natural mortality, weight at age, etc.

In the EqSim simulations the Hockey-Stick stock-recruit function were used assuming assessment and autocorrelation errors. Figures 6.4.1.1 and 6.4.1.2 illustrate the results of these simulations which suggest that candidates for FMSY are FMSY $=0.34$ (median yield) and FMSY $=0.30$ ( F that gives the maximum mean yield in the long term) if autocorrelation and assessment errors are included in the simulation framework. If errors are ignored then estimates for FMSY are predicted to FMSY $=0.38$ (median yield), FMSY $=0.35$ (maximum mean yield). No Blim is defined for faroe saithe but for the purposes of the analysis a value of $\mathrm{Bim}=\mathrm{Bp}_{\mathrm{p}} / 1.4$ was set for the simulations. A more detailed information of the simulations are available under http://www.ices.dk/community/groups/Pages/WKMSYREF2.aspx A summary is given in the table below.

|  | F | SSB | CATCH | option |
| :--- | :---: | :---: | :---: | :---: |
| Flim | 0.34 | 87327.43 | 36479.8 | ass. Error |
| Flim | 0.37 | 79116.87 | 35447.45 | ass. Error |
| Flim | 0.46 | 38905.3 | 22023.28 | ass. Error |
| MSY:median | 0.34 | 88565.78 | 36665.24 | ass. Error |
| Maxmeanland | 0.30 | 101372.9 | 37109.88 | ass. Error |
| FCrash | 0.41 | 63312 | 31637.31 | ass. Error |
| FCras50 | 0.52 | 855.73 | 550.19 | ass. Error |
| Flim | 0.40 | 78435.72 | 38526.07 | No ass. Error |
| Flim | 0.42 | 73052.08 | 37660.27 | No ass. Error |
| Flim | 0.50 | 38910.57 | 24279.75 | No ass. Error |
| MSY:median | 0.38 | 82329.53 | 38694.43 | No ass. Error |
| Maxmeanland | 0.35 | 90688.34 | 39167.13 | No ass. Error |
| FCrash5 | 0.43 | 69750.99 | 37114.99 | No ass. Error |
| FCrash50 | 0.54 | 2847.53 | 1910.51 | No ass. Error |

MSY and revised precautionary reference points (Section 2. Demersal stocks in the Faroe Area, Subsection 2.1.7 Faroe saithe) for Faroe saithe are listed below:

|  | BIOLOGICAL REFERENCE POINTS | NWWG 2012 |
| :--- | :---: | :---: |$\quad$ NWWG2015

The Yield/R and SSB-R calculations with respect to reference fishing mortalities (Fmax, Fmed and F0.1) is presented in the table below. The SSB-R plot in relation to Fhigh, Fmed and Flow is shown in Figure 6.4.1.3.

|  | FISH MORT <br> AGES 4-8 | YIELD/R | SSB/R |
| :--- | :---: | :---: | :---: |
| Average last 3 years | 0.35 | 1.28 | 2.84 |
| $F_{\max }$ | 0.42 | 1.29 | 2.36 |
| F $_{0.1}$ | 0.15 | 1.15 | 6.10 |
| $F_{\text {med }}$ | 0.31 | 1.28 | 3.29 |

### 6.5 State of the stock

Recruitment in the 1980s was close to the historical average ( 32 millions). The strongest year class since 1986 was produced in the 1990s and the average for that decade was about 28 million (Figures 6.5.1-6.5.4. and Tables 6.5.1 to 6.5.3). The 1998 ( 88 millions) and 1999 ( 106 millions) are the largest observed in the time-series. Since 2006 estimated recruitment has remained at low levels compared with the exceptionally high recruitment pulses observed from 2001-2005. However the 2012 year class (numbers of age-3 saithe in 2015) is estimated at 63 million and therefore far above the historical average of 32 million. Nevertheless the most recent recruitment estimate is highly unreliable and it contradicts with the estimate from a separable statistical model, which predicts recruitment at $\mathrm{N}_{3}(2015)=36$ million and thus in line with the present low productivity period.

Relatively low Fs during the 1960s and recruitment above average in early-1970s caused an increase in SSB well above the historical average around the mid-1970s while landings peaked to almost 58000 t . in 1973. Increasing Fs since 1980 lead to a decrease in the spawning-stock biomass of saithe throughout the mid-1980s although recruitment of the 1983 year class rose to 662000 millions, i.e. double the average from 1961 to 2014. The historically low SSB persisted in 1992-1998 and this along with low Fs caused landings to steeply decline to around 20000 tonnes in 1996. The SSB increased since 1999 to above 128000 t in 2005 with the maturation of the 1995, 1996, 1997 and 1999 year classes and decreased to 93000 t in 2009. The 2015 spaly assessment indicates that the point estimator of SSB (2014) is approximately 77000 t . From 2005 to 2013 SSB has been declining sharply but it has increased again since 2013 above $B_{\text {trigger }}=55000 \mathrm{t}$. due to improving maturity ogives and growth. Figure 6.5.6 illustrates the numbers of mature fish in the stock forage-groups from 3 to 9 in 2006, 2013 and 2014. It is quite clear that there has been a substantial increase in the numbers of mature fish over the age groups 3 to 6 a phenomenon supported by increased maturity ogives in recent years The separable catch-at-age model predicts $\operatorname{SSB}(2015)=68000 \mathrm{t}$.

In 2015 average fishing mortality over age groups 4 to 8 ( $\mathrm{Fbar}^{\mathrm{b}}$ ) is estimated at $\mathrm{F}(2015)=0.25$, which is the lowest since $1980(\mathrm{~F}=0.21)$ and therefore below $\mathrm{F}_{\mathrm{ms}}=0.30$. On the other hand the statistical model framework suggests that $\mathrm{F}(2015)=0.32$ is higher than that of the spaly assessment. The assessment model suggests a drop in fishing mortality since 2013 reflecting the abrupt decline in landings since 2011. The relation between stock and recruitment is presented in figure 6.5.7.

### 6.6 Short-term forecast

### 6.6.1 Input data

Population numbers-at-age 3 for the base short-term prediction is calculated as the geometric mean of estimated recruitment strength from 2010-2014. Natural mortality is set to constant 0.2 . Weight-at-age for 3 -years old saithe is predicted by the year-class strength (number of 3 -years old in the stock) with a 3 year time-lag (Eq. 1) whereas weight for ages 4-8 is estimated by weight-at-age the previous year from the same year class (Eq. 2) Weight for ages $9-14+$ is an average of the most 3 recent years. Diagnostics and results of the model are shown in Figures 6.6.1.1 and 6.6.1.2. For older age groups ( 9 to $14+$ ) a 3-year average is used.
$\mathrm{W} 3, \mathrm{y}=\alpha \mathrm{N} 3, \mathrm{y}-3+\beta$
for $\mathrm{a}=3$ (Eq. 1)
$\mathrm{Wa}+1, \mathrm{y}+1=\alpha \mathrm{Wa}, \mathrm{y}+\beta$
for $4 \leq \mathrm{a} \leq 8 \quad$ (Eq. 2)
$\mathrm{Wa}, \mathrm{y}=(\mathrm{Wa}-3, \mathrm{y} \mathrm{Wa}-2, \mathrm{y} \mathrm{Wa}-1, y) / 3 \quad$ for $9 \leq \mathrm{a} \leq 14+\quad$ (Eq. 3)
Proportion mature for 2016-2018 is taken as the average of predicted maturity ogives from 2014 and 2016. The exploitation pattern used is a 3 year average rescaled to last year as specified in the stock annex.

Input data for the prediction with management options for the spaly scenario are presented in Table 6.6.1.1.

### 6.6.2 Projection of catch and biomass

Results from predictions with management option is presented in Table 6.6.2.1 and Figure 6.6.2.1.

At status quo $\mathrm{F}=0.25$ landings would increase to 32 kt . in 2016 and 40 kt . in 2017 while spawning-stock biomass is expected to around 97 kt . in 2016 and increase to 126 kt . tonnes in 2017. Landings in 2016 are predicted to rely on the 2010, 2011 and 2012 year classes ( $69 \%$ ) while in the SSB these year classes will contribute to around $62 \%$ of the spawning biomass in 2016 (Figure 6.6.2.2.)

### 6.7 Yield-per-recruit and medium term forecasts

No medium term projections were performed for Faroe saithe.

## Input data to yield-per-recruit

The input data to long-term prediction are shown in Table 6.7.1.1.
Mean weights-at-age for 1981-2013 were used for the long-term projection. Natural mortality is set to constant 0.2. Proportion mature-at-age is taken as the average from 1983-2014.

The exploitation pattern was set equal to the average of the last five years (as suggested from ACFM, 2004). Results from the yield-per-recruit analysis is shown in Figure 6.7.1.1.

### 6.8 Uncertainties in assessment and forecast

In 2015 the amount of catch sampled was $9.9 \%$, which is regarded as adequate.
The assessment of Faroe saithe is relatively uncertain due to lack of good tuning data although the internal consistency in the commercial fleets used to calibrate the XSA model is reasonable considering the highly schooling and widely migrating behaviour of the species. The retrospective pattern (Figure 6.8.1) reveals some of the assessment uncertainty. It shows periods of over- and underestimation in average fishing mortality and consequently under- and overestimation in spawning-stock biomass. Overand underestimation seem to occur in periods of poor and high abundances respectively. Various factors could explain this phenomenon, e.g. by changes in the vertical distribution of the stock or changes in the selection pattern that have been observed in recent years. The retrospective plots show very small revisions in SSB and F in 2014 and 2015.

With respect to recruitment the retrospective trend suggests an overestimation of incoming year classes. To avoid large year-to-year fluctuations in the spawning-stock biomass (also dependent on age structure) a locally fitting model was implemented in 2012 to reduce variability of maturities.

### 6.9 Comparison with previous assessment and forecast

The 2015 assessment predicted recruitment for 205 to around 27 million while the observed year class strength was 63 million (Table 6.9.1). Fishing mortality was overestimated from $\mathrm{F}=0.31$ to $\mathrm{F}=0.25$. The spawning-stock biomass was overestimated by around $5 \%$. Landings for 2015 were predicted at Land(2015) $=35 \mathrm{kt}$. while actual observed catches in that year reached $\operatorname{Land}(2015)=25 \mathrm{kt}$ an overestimation of $40 \%$. Landings and recruitment estimates from the statistical model were however closer to the actual measurements $\operatorname{Land}(2015)=26 \mathrm{kt}$. and recruitment $\operatorname{Rec}(2015)=36$ mill.than the spaly run.

### 6.10 Management plans and evaluations

No management plan exists for saithe in Division 5.b

### 6.11 Management considerations

Management consideration for saithe is under the general section for Faroese stocks.
In 2014 ACOM adopted $\mathrm{Fms}_{\mathrm{m}}=0.30\left(\mathrm{~F}_{\mathrm{pa}}=0.30\right)$ presented at the NWWG meeting for the same year and produced in the WKMSYREF2 workshop on reference points. Btrigger is set at Bloss $=55 \mathrm{kt}$. (Btrigger $=55 \mathrm{kt})$.

### 6.12 Ecosystem considerations

No evidence is available to indicate that the fishery is impacting the marine environment. A PhD. project was initiated in 2008, with the aim of investigate the role of environmental indicators in the dynamics of Faroe saithe. The results and conclusions of the PhD will be available to the working group in future meetings.

### 6.13 Regulations and their effects

It seems to be no relationship between number of fishing days and fishing mortality, probably because of large fluctuations in catchability. Area restriction is an alternative to reduce fishing mortality- and this is used to protect small saithe in Faroese area.

### 6.14 Changes in fishing technology and fishing patterns

See section 6.2.

### 6.15 Changes in the environment

According to existing literature the productivity of the ecosystem clearly affects both cod and haddock recruitment and growth (Gaard et al., 2002), a feature outlined in Steingrund and Gaard (2005). The primary production on the Faroe Shelf (< 130 m depth), over the period May through June, varied interannually by a factor of five, giving rise to low- or high-productive periods of $2-5$ years duration (Steingrund and Gaard, 2005). The productivity over the outer areas seems to be negatively correlated with the strength of the Subpolar Gyre (Hátún et al., 2005; Hátún et al., 2009; Steingrund et al., 2010), which may regulate the abundance of saithe in Faroese waters (Steingrund and Hátún, 2008). When comparing a gyre index (GI) to saithe in Faroese waters there was a marked positive relationship between annual variations in GI and the total biomass of saithe lagged 4 years (Figure 6.15.1.)
There is a negative relationship between mean weight-at-age and the stock size of saithe in Faroese waters. This could be due to simple density-dependence, where there
is a competition for limited food resources. Stomach content data show that the food of saithe is dominated by blue whiting, Norway pout, and krill, and the annual variations in the stomach fullness are mainly attributable to variations in the feeding on blue whiting. There seems to be no relationship between stomach fullness and weights-atage for saithe (í Homrum et al. WD 2009).

### 6.16 References

ICES. 2014. Report of the Workshop to consider reference points for all stocks (WKMSYREF2). ICES CM 2014/ACOM:47. Section 7.3.
í Homrum, E., Ofstad, L.H. and Steingrund, P. 2009. Diet of Saithe on the Faroe Plateau. WD, NWWG 2009.

ICES C.M. 1993/Assess:18.
ICES C.M. 1998/ACFM:19.
ICES C.M. 2003/ACFM:24.
ICES C.M. 2005/ACFM:21.
ICES C.M. 2006/ACFM:26.
ICES C.M. 2007/ACFM:17
ICES C.M. 2008/ACOM:03
Hatun, H., Sando, A. B., Drange, H., Hansen, B., and Valdimarsson, H. 2005b: Influence of the Atlantic subpolar gyre on the thermohaline circulation. Science, 309: 1841-1844.

Ridao Cruz, L. 2005. Some exploratory analysis on the GLM model used to predict maturity for Faroe Saithe. WD 12, NWWG 2005.

Ridao Cruz, L. 2008. Post-Stratification of the survey indices for Faroese saithe. WD 5, NWWG 2008.

Ridao Cruz, L. 2010. Post-Stratification of the survey indices for Faroese saithe. WD 3, WKROUND 2010.
Ridao Cruz, L. 2010. Length Cohort Analysis (LCA) of Faroe Saithe. WD 5, WKROUND 2010.
Ridao Cruz, L. 2010. Faroese Groundfish Surveys for Saithe in Vb. WD 6, WKROUND 2010.
Ridao Cruz, L. 2010. NTF- ADAPT model for Faroese Saithe. WD 7, WKROUND 2010.
Ridao Cruz, L. 2010. Overview on the Faroese saithe fishery. WD 8, WKROUND 2010.
Ridao Cruz, L. 2010. GLM model diagnostics of Pair-trawl catch rates for saithe in Vb. WD 9, WKROUND 2010.

Steingrund, P. and Hatun, H., 2008. Relationship between the North Atlantic Subpolar Gyre and fluctuations of the saithe stock in Faroese waters. WD 20, NWWG 2008.

Steingrund, P. April 2003. Correction of the maturity stages from Faroese spring groundfish survey. WD 14, NWWG 2003.
Steingrund, P. and Gaard, E. 2005. Relationship between phytoplankton production and cod production on the Faroe shelf. ICES Journal of Marine Science 62: 163-176.

Steingrund, P., Mouritsen, R., Reinert, J., Gaard, E., and Hátún, H. 2010. Total stock size and cannibalism regulate recruitment in cod (Gadus morhua) on the Faroe Plateau. ICES Journal of Marine Science, 67: 111-124.

### 6.17 Tables

Table 6.2.1.1. Faroe saithe (Division 5.b). Nominal catches (tonnes round weight) by countries 19882015 as officially reported to ICES.

| Country | 1988 | 1989 | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Denmark | 94 | - | 2 | - | - | - | - | - | - | - | - | - | - | - |
| Estonia | - | - | - | - | - | - | - | - | - | 16 | - | - | - | - |
| Faroe Islands | 44402 | 43624 | 59821 | 53321 | 35979 | 32719 | 32406 | 26918 | 19267 | 21721 | 25995 | 32439 |  | 49676 |
| France 3 | 313 | - | - | - | 120 | 75 | 19 | 10 | 12 | 9 | 17 | - | 273 | 934 |
| Germany | - | - | - | 32 | 5 | 2 | 1 | 41 | 3 | 5 | - | 100 | 230 | 667 |
| German <br> Dem.Rep. | - | 9 | - | - | - | - | - | - | - | - | - | - | - | - |
| German Fed. Rep. | 74 | 20 | 15 | - | - | - | - | - | - | - | - | - | - | 5 |
| Greenland | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| Ireland | - | - | - | - | - | - | - | - | - | - | - | 0 | 0 | 0 |
| Netherlands | - | 22 | 67 | 65 | - | - | - | - | - |  | - | 160 | 72 | 60 |
| Norway | 52 | 51 | 46 | 103 | 85 | 32 | 156 | 10 | 16 | 67 | 53 | - | - | - |
| Portugal | - | - | - | - | - | - | - | - | - | - | - | - | 20 | 1 |
| UK (Eng. \& W.) | - | - | - | 5 | 74 | 279 | 151 | 21 | 53 | - | 19 | 67 | 32 | 80 |
| UK (Scotland) | 92 | 9 | 33 | 79 | 98 | 425 | 438 | 200 | 580 | 460 | 337 | 441 | 534 | 708 |
| USSR/Russia 2 | - | - | 30 | - | 12 | - | - | - | 18 | 28 | - | - | - | - |
| Total | 45027 | 43735 | 60014 | 53605 | 36373 | 33532 | 33171 | 27200 | 19949 | 22306 | 26065 | 33207 | 1161 | 52131 |
| Working Group estimate 45 | 45285 | 44477 | 61628 | 54858 | 36487 | 33543 | 33182 | 27209 | 20029 | 22306 | 26421 | 33207 | 39020 | 51786 |
| COUNTRY | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 |
| Denmark | - | - | - | - | 34 | - | - | - | - | - | - | - | - | - |
| Estonia | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| Faroe Islands | 55165 | 47933 | 48222 | 71496 | 70696 | 64552 | 61117 | 61889 | 46686 | 32056 | 38175 | 28609 | 25474 | 26796 |
| France | 607 | 370 | 147 | 123 | 315 | 108 | 97 | 68 | 46 | 135 | 40 | 31 | 0 | 122 |
| Germany | 422 | 281 | 186 | 1 | 49 | 3 | 3 | 0 |  |  |  |  |  |  |
| Greenland | 125 | - |  |  | 73 | 239 | 0 | 1 |  |  | 1 |  |  |  |
| Irland | - | - | - | - | - | - | - | - |  |  |  |  |  |  |
| Iceland | - | - | - | - | - | - | - | 148 | - |  |  |  |  |  |
| Netherlands | 0 | 0 | 0 | 0 | 0 | 3 | 0 | 0 | 0 |  |  |  |  |  |
| Norway | 77 | 62 | 82 | 82 | 35 | 81 | 38 | 23 | 28 |  |  |  | 165 | 40 |
| Portugal | - | - | 5 | - | - | - | - | - |  |  |  |  |  |  |
| Russia | 10 | 32 | 71 | 210 | 104 | 159 | 38 | 44 | 3 |  |  | 1 |  |  |
| UK (E/W/NI) | 58 | 89 | 85 | 32 | 88 | 4 | - | - |  |  |  |  |  |  |
| UK (Scotland) | 540 | 610 | 748 | 4322 | 1011 | 408 | 400 | 685 |  |  |  |  |  |  |
| United <br> Kingdom | - | - | - | - | - | - | - | - | 706 | 19 |  | 1 | 340 | 204 |
| Total | 57004 | 49377 | 49546 | 76266 | 72405 | 65557 | 61693 | 62858 | 47469 | 32210 | 38216 | 28642 | 25979 | 27262 |
| Working Group estimate | 53546 | 46555 | 46355 | 67967 | 66902 | 60785 | 57044 | 57949 | 43885 | 29658 | 35314 | 26463 | 23885 | 25128 |

Table 6．2．1．2．Faroe saithe（Division 5．b）．Total Faroese landings（rightmost column）and the contri－ bution（\％）by each fleet category（1985－2015）．Averages for 1985－2015 are given at the bottom．

|  | $\begin{aligned} & \tilde{4} \\ & \text { ¿} \\ & \text { z } \\ & \text { zü } \end{aligned}$ |  |  | $\begin{aligned} & \text { 号 } \\ & \text { ㄹ } \end{aligned}$ | $\begin{aligned} & \text { ̛山己 } \\ & \underline{U} \end{aligned}$ |  |  |  |  |  |  | N |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1985 | 0.2 | 0.1 | 0.1 | 0.0 | 2.6 | 6.6 | 33.7 | 28.2 | 28.2 | 0.1 | 0.2 | 0.2 | 42598 |
| 1986 | 0.3 | 0.2 | 0.1 | 0.1 | 3.6 | 2.8 | 27.3 | 27.5 | 36.5 | 0.1 | 0.7 | 0.9 | 40107 |
| 1987 | 0.7 | 0.1 | 0.3 | 0.4 | 5.6 | 4.1 | 20.4 | 22.8 | 44.2 | 0.1 | 1.1 | 0.0 | 39627 |
| 1988 | 0.4 | 0.3 | 0.1 | 0.3 | 6.5 | 6.8 | 20.8 | 19.6 | 43.6 | 0.1 | 1.3 | 0.1 | 43940 |
| 1989 | 0.9 | 0.1 | 0.3 | 0.2 | 9.3 | 5.4 | 17.7 | 23.5 | 41.1 | 0.1 | 1.3 | 0.0 | 43624 |
| 1990 | 0.6 | 0.2 | 0.2 | 0.2 | 7.4 | 3.9 | 19.6 | 24.0 | 42.8 | 0.2 | 0.9 | 0.0 | 59821 |
| 1991 | 0.6 | 0.1 | 0.1 | 0.6 | 9.8 | 1.3 | 13.9 | 26.5 | 46.2 | 0.1 | 0.8 | 0.0 | 53321 |
| 1992 | 0.4 | 0.4 | 0.0 | 0.0 | 10.5 | 0.5 | 7.1 | 24.4 | 55.6 | 0.1 | 1.0 | 0.0 | 35979 |
| 1993 | 0.6 | 0.2 | 0.1 | 0.0 | 9.3 | 0.6 | 6.5 | 21.4 | 60.6 | 0.1 | 0.7 | 0.0 | 32719 |
| 1994 | 0.4 | 0.4 | 0.1 | 0.0 | 12.6 | 1.1 | 6.8 | 18.5 | 59.1 | 0.2 | 0.7 | 0.0 | 32406 |
| 1995 | 0.2 | 0.1 | 0.4 | 0.0 | 9.6 | 0.9 | 9.9 | 17.7 | 60.9 | 0.3 | 0.0 | 0.0 | 26918 |
| 1996 | 0.0 | 0.0 | 0.1 | 0.0 | 9.2 | 1.2 | 6.8 | 23.7 | 58.6 | 0.2 | 0.0 | 0.0 | 19267 |
| 1997 | 0.0 | 0.1 | 0.1 | 0.0 | 8.9 | 2.5 | 10.7 | 17.8 | 58.9 | 0.4 | 0.4 | 0.0 | 21721 |
| 1998 | 0.1 | 0.4 | 0.1 | 0.0 | 8.1 | 2.8 | 13.8 | 16.5 | 57.6 | 0.3 | 0.4 | 0.0 | 25995 |
| 1999 | 0.0 | 0.1 | 0.1 | 0.0 | 5.7 | 1.2 | 12.6 | 18.5 | 60.0 | 0.2 | 1.6 | 0.0 | 32439 |
| 2000 | 0.1 | 0.1 | 0.2 | 0.0 | 3.7 | 0.3 | 15.0 | 17.5 | 62.3 | 0.1 | 0.7 | 0.0 | 39020 |
| 2001 | 0.1 | 0.1 | 0.1 | 0.0 | 2.8 | 0.3 | 20.2 | 16.5 | 58.8 | 0.2 | 0.8 | 0.1 | 51786 |
| 2002 | 0.1 | 0.2 | 0.1 | 0.0 | 1.6 | 0.1 | 26.5 | 10.5 | 60.8 | 0.1 | 0.0 | 0.0 | 53546 |
| 2003 | 0.0 | 0.0 | 1.9 | 0.0 | 0.9 | 0.4 | 17.4 | 14.7 | 64.7 | 0.1 | 0.0 | 0.0 | 46555 |
| 2004 | 0.1 | 0.2 | 3.7 | 0.0 | 1.9 | 0.4 | 15.1 | 14.4 | 63.8 | 0.2 | 0.0 | 0.0 | 44605 |
| 2005 | 0.2 | 0.1 | 4.4 | 0.0 | 2.4 | 0.2 | 12.7 | 20.6 | 59.2 | 0.2 | 0.0 | 0.0 | 66394 |
| 2006 | 0.2 | 0.4 | 0.3 | 0.0 | 3.9 | 0.1 | 19.8 | 20.6 | 54.1 | 0.6 | 0.0 | 0.0 | 65394 |
| 2007 | 0.2 | 0.2 | 0.2 | 0.0 | 2.0 | 0.1 | 30.4 | 16.0 | 50.6 | 0.3 | 0.0 | 0.0 | 41341 |
| 2008 | 0.2 | 0.3 | 1.5 | 0.0 | 3.2 | 0.2 | 20.4 | 16.0 | 57.7 | 0.5 | 0.0 | 0.0 | 27475 |
| 2009 | 0.4 | 0.2 | 3.3 | 0.0 | 4.3 | 0.1 | 9.6 | 15.1 | 66.8 | 0.2 | 0.0 | 0.0 | 47122 |
| 2010 | 0.1 | 0.1 | 1.2 | 0.0 | 3.9 | 2.4 | 8.3 | 15.1 | 68.3 | 0.6 | 0.0 | 0.0 | 38293 |
| 2011 | 0.1 | 0.1 | 0.5 | 0.0 | 3.6 | 1.3 | 2.6 | 14.1 | 77.1 | 0.5 | 0.0 | 0.0 | 26854 |
| 2012 | 0.2 | 0.1 | 1.9 | 0.0 | 2.4 | 0.1 | 2.2 | 18.6 | 73.5 | 1.0 | 0.0 | 0.0 | 31633 |
| 2013 | 0.1 | 0.3 | 1.0 | 0.0 | 3.2 | 0.2 | 0.6 | 24.9 | 69.0 | 0.5 | 0.0 | 0.1 | 22339 |
| 2014 | 0.2 | 0.3 | 0.5 | 0.0 | 1.9 | 0.2 | 0.2 | 15.6 | 80.7 | 0.3 | 0.0 | 0.1 | 20793 |
| 2015 | 0.2 | 0.4 | 1.1 | 0.0 | 2.3 | 0.0 | 0.2 | 18.0 | 75.5 | 0.3 | 0.0 | 0.0 | 20956 |
| Avg． | 0.3 | 0.2 | 0.8 | 0.1 | 5.2 | 1.5 | 13.9 | 19.3 | 58.0 | 0.3 | 0.4 | 0.0 | 38535 |

Table 6.2.2.1. Faroe saithe (Division 5.b). Catch number-at-age by fleet categories in 2015 (calculated from gutted weights).

| Age | JIGGERS | Single <br> TRAWLERS $>1000 \mathrm{HP}$ | Pairtrawlers <1000 HP | Pairtrawlers $>1000 \mathrm{HP}$ | Others | Total Division 5.b |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2 | 0 | 0 | 4 | 22 | 0 | 27 |
| 3 | 27 | 28 | 447 | 1233 | 45 | 1781 |
| 4 | 48 | 40 | 349 | 1414 | 41 | 1892 |
| 5 | 58 | 39 | 358 | 1645 | 49 | 2149 |
| 6 | 37 | 40 | 296 | 1206 | 30 | 1608 |
| 7 | 17 | 15 | 118 | 556 | 14 | 719 |
| 8 | 5 | 5 | 37 | 185 | 4 | 236 |
| 9 | 5 | 3 | 25 | 111 | 4 | 149 |
| 10 | 3 | 1 | 10 | 55 | 2 | 72 |
| 11 | 1 | 1 | 7 | 48 | 1 | 58 |
| 12 | 0 | 1 | 6 | 20 | 0 | 27 |
| 13 | 0 | 1 | 5 | 20 | 0 | 26 |
| 14 | 0 | 0 | 1 | 6 | 0 | 7 |
| 15 | 0 | 0 | 1 | 3 | 0 | 5 |
| Total No. | 202 | 174 | 1665 | 6525 | 192 | 8757 |
| Catch, t. | 498 | 428 | 3764 | 15818 | 449 | 20957 |

Table 6.2.2.2. Faroe saithe (Division 5.b). Catch number-at-age (thousands) from the commercial fleet (1961-2014)

| CN | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14+ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1961 | 183 | 379 | 483 | 403 | 216 | 129 | 116 | 82 | 45 | 27 | 6 | 49 |
| 1962 | 562 | 542 | 617 | 495 | 286 | 131 | 129 | 113 | 71 | 29 | 13 | 63 |
| 1963 | 614 | 340 | 340 | 415 | 406 | 202 | 174 | 158 | 94 | 169 | 61 | 44 |
| 1964 | 684 | 1908 | 1506 | 617 | 572 | 424 | 179 | 150 | 100 | 83 | 47 | 44 |
| 1965 | 996 | 850 | 1708 | 965 | 510 | 407 | 306 | 201 | 156 | 120 | 89 | 76 |
| 1966 | 488 | 1540 | 1201 | 1686 | 806 | 377 | 294 | 205 | 156 | 94 | 52 | 79 |
| 1967 | 595 | 796 | 1364 | 792 | 1192 | 473 | 217 | 190 | 97 | 75 | 38 | 27 |
| 1968 | 614 | 1689 | 1116 | 1095 | 548 | 655 | 254 | 128 | 89 | 59 | 40 | 88 |
| 1969 | 1191 | 2086 | 2294 | 1414 | 1118 | 589 | 580 | 239 | 115 | 100 | 36 | 54 |
| 1970 | 1445 | 6577 | 1558 | 1478 | 899 | 730 | 316 | 241 | 86 | 48 | 46 | 38 |
| 1971 | 2857 | 3316 | 5585 | 1005 | 828 | 469 | 326 | 164 | 100 | 54 | 13 | 33 |
| 1972 | 2714 | 1774 | 2588 | 2742 | 1529 | 1305 | 1017 | 743 | 330 | 133 | 28 | 49 |
| 1973 | 2515 | 6253 | 7075 | 3478 | 1634 | 693 | 550 | 403 | 215 | 103 | 25 | 58 |
| 1974 | 3504 | 4126 | 4011 | 2784 | 1401 | 640 | 368 | 340 | 197 | 124 | 45 | 96 |
| 1975 | 2062 | 3361 | 3801 | 1939 | 1045 | 714 | 302 | 192 | 193 | 126 | 64 | 108 |
| 1976 | 3178 | 3217 | 1720 | 1250 | 877 | 641 | 468 | 223 | 141 | 96 | 60 | 131 |
| 1977 | 1609 | 2937 | 2034 | 1288 | 767 | 708 | 498 | 338 | 272 | 129 | 80 | 121 |
| 1978 | 611 | 1743 | 1736 | 548 | 373 | 479 | 466 | 473 | 407 | 211 | 146 | 178 |
| 1979 | 287 | 933 | 1341 | 1033 | 584 | 414 | 247 | 473 | 368 | 206 | 136 | 349 |
| 1980 | 996 | 877 | 720 | 673 | 726 | 284 | 212 | 171 | 196 | 156 | 261 | 369 |
| 1981 | 411 | 1804 | 769 | 932 | 908 | 734 | 343 | 192 | 92 | 128 | 176 | 717 |
| 1982 | 387 | 4076 | 994 | 1114 | 380 | 417 | 296 | 105 | 88 | 56 | 49 | 797 |
| 1983 | 2483 | 1103 | 5052 | 1343 | 575 | 339 | 273 | 98 | 98 | 99 | 25 | 416 |
| 1984 | 368 | 11067 | 2359 | 4093 | 875 | 273 | 161 | 52 | 65 | 59 | 18 | 176 |
| 1985 | 1224 | 3990 | 5583 | 1182 | 1898 | 273 | 103 | 38 | 26 | 72 | 41 | 162 |
| 1986 | 1167 | 1997 | 4473 | 3730 | 953 | 1077 | 245 | 104 | 67 | 33 | 56 | 69 |
| 1987 | 1581 | 5793 | 3827 | 2785 | 990 | 532 | 333 | 81 | 43 | 5 | 11 | 81 |
| 1988 | 866 | 2950 | 9555 | 2784 | 1300 | 621 | 363 | 159 | 27 | 43 | 15 | 2 |
| 1989 | 451 | 5981 | 5300 | 7136 | 793 | 546 | 185 | 83 | 55 | 10 | 2 | 27 |
| 1990 | 294 | 3833 | 10120 | 9219 | 5070 | 477 | 123 | 61 | 60 | 18 | 19 | 42 |
| 1991 | 1030 | 5125 | 7452 | 5544 | 3487 | 1630 | 405 | 238 | 128 | 77 | 22 | 19 |
| 1992 | 521 | 4067 | 3667 | 2679 | 1373 | 894 | 613 | 123 | 63 | 37 | 52 | 19 |
| 1993 | 1316 | 2611 | 4689 | 1665 | 858 | 492 | 448 | 245 | 54 | 34 | 10 | 8 |
| 1994 | 690 | 3961 | 2663 | 2368 | 746 | 500 | 307 | 303 | 150 | 28 | 19 | 2 |
| 1995 | 398 | 1019 | 3468 | 1836 | 1177 | 345 | 241 | 192 | 104 | 73 | 25 | 19 |
| 1996 | 297 | 1087 | 1146 | 1449 | 1156 | 521 | 132 | 77 | 64 | 45 | 29 | 8 |
| 1997 | 344 | 832 | 2440 | 1767 | 1335 | 624 | 165 | 71 | 29 | 48 | 29 | 23 |
| 1998 | 163 | 1689 | 1934 | 3475 | 1379 | 683 | 368 | 77 | 32 | 28 | 24 | 21 |
| 1999 | 322 | 655 | 3096 | 2551 | 4113 | 915 | 380 | 147 | 24 | 27 | 5 | 37 |
| 2000 | 811 | 2830 | 1484 | 4369 | 2226 | 2725 | 348 | 186 | 56 | 18 | 2 | 5 |
| 2001 | 1125 | 2452 | 8437 | 2155 | 3680 | 1539 | 1334 | 293 | 90 | 24 | 19 | 13 |
| 2002 | 302 | 8399 | 5962 | 9786 | 862 | 1280 | 465 | 362 | 33 | 36 | 8 | 1 |


| $\mathbf{C N}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{6}$ | $\mathbf{7}$ | $\mathbf{8}$ | $\mathbf{9}$ | $\mathbf{1 0}$ | $\mathbf{1 1}$ | $\mathbf{1 2}$ | $\mathbf{1 3}$ | $\mathbf{1 4 +} \mathbf{4}$ |
| ---: | :--- | ---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2003 | 330 | 2432 | 11152 | 3994 | 4287 | 417 | 419 | 304 | 91 | 40 | 3 | 0 |
| 2004 | 76 | 2011 | 8544 | 8762 | 2125 | 1807 | 265 | 293 | 146 | 100 | 10 | 2 |
| 2005 | 454 | 2948 | 9486 | 16606 | 7099 | 843 | 810 | 32 | 102 | 27 | 3 | 0 |
| 2006 | 1475 | 5045 | 7781 | 7712 | 10296 | 3760 | 640 | 282 | 32 | 12 | 12 | 5 |
| 2007 | 831 | 3320 | 11305 | 6473 | 3781 | 4294 | 1538 | 406 | 81 | 11 | 9 | 3 |
| 2008 | 4784 | 3108 | 3598 | 9370 | 3594 | 2223 | 2048 | 444 | 159 | 12 | 6 | 0 |
| 2009 | 459 | 7412 | 4978 | 1842 | 5167 | 2009 | 1696 | 1069 | 292 | 41 | 3 | 1 |
| 2010 | 2324 | 2916 | 5298 | 1125 | 1009 | 2098 | 1248 | 832 | 376 | 51 | 22 | 0 |
| 2011 | 1897 | 2744 | 1940 | 1804 | 477 | 530 | 704 | 521 | 439 | 138 | 34 | 4 |
| 2012 | 859 | 9833 | 4142 | 1252 | 901 | 304 | 307 | 399 | 229 | 136 | 91 | 21 |
| 2013 | 721 | 5172 | 4219 | 2242 | 511 | 209 | 122 | 96 | 146 | 85 | 39 | 36 |
| 2014 | 879 | 2323 | 3143 | 1681 | 865 | 330 | 99 | 92 | 70 | 55 | 16 | 1 |
| 2015 | 2135 | 2269 | 2577 | 1928 | 863 | 283 | 179 | 86 | 69 | 33 | 31 | 15 |

Table 6.2.2.3. Faroe saithe (Division 5.b). Sampling intensity in 2001-2015.



Table 6.2.3.1. Faroe saithe (Division 5.b). Catch weights at age (kg)(equal to stock-weights) from the commercial fleet (1961-2015). The value for 2016 is used for short-term projections.

| CW | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14+ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1961 | 1.43 | 2.302 | 3.348 | 4.287 | 5.128 | 6.155 | 7.06 | 7.265 | 7.497 | 8.198 | 9.154 | 9.992 |
| 1962 | 1.273 | 2.045 | 3.293 | 4.191 | 5.146 | 5.655 | 6.469 | 6.706 | 7.15 | 7.903 | 8.449 | 9.658 |
| 1963 | 1.28 | 2.197 | 3.212 | 4.568 | 5.056 | 5.932 | 6.259 | 8 | 7.265 | 8.551 | 9.02 | 9.818 |
| 1964 | 1.175 | 2.055 | 3.266 | 4.255 | 5.038 | 5.694 | 6.662 | 6.837 | 7.686 | 8.348 | 8.123 | 9.423 |
| 1965 | 1.181 | 2.125 | 2.941 | 4.096 | 4.878 | 5.932 | 6.321 | 7.288 | 8.074 | 7.878 | 9.479 | 9.849 |
| 1966 | 1.361 | 2.026 | 3.055 | 3.658 | 4.585 | 5.52 | 6.837 | 7.265 | 7.662 | 8.123 | 10.21 | 9.883 |
| 1967 | 1.273 | 1.78 | 2.534 | 3.572 | 4.368 | 5.313 | 5.812 | 6.554 | 7.806 | 7.591 | 8.551 | 9.135 |
| 1968 | 1.302 | 1.737 | 2.036 | 3.12 | 4.049 | 5.183 | 6.238 | 7.52 | 8.049 | 8.654 | 8.298 | 9.748 |
| 1969 | 1.188 | 1.667 | 2.302 | 2.853 | 3.673 | 5.002 | 5.714 | 6.405 | 6.554 | 7.591 | 7.951 | 9.096 |
| 1970 | 1.244 | 1.445 | 2.249 | 2.853 | 3.515 | 4.418 | 5.444 | 5.733 | 6.662 | 7.31 | 9.047 | 9.634 |
| 1971 | 1.101 | 1.316 | 1.818 | 2.978 | 3.702 | 4.271 | 5.388 | 5.972 | 6.49 | 7.173 | 7.38 | 9.612 |
| 1972 | 1.043 | 1.485 | 2.055 | 2.829 | 3.791 | 4.175 | 4.808 | 5.294 | 6.948 | 6.727 | 7.591 | 9.609 |
| 1973 | 1.306 | 1.754 | 1.899 | 2.7 | 4.426 | 5.264 | 6.156 | 6.334 | 8.076 | 8.777 | 9.782 | 11.115 |
| 1974 | 1.615 | 1.723 | 2.493 | 2.824 | 3.524 | 5.197 | 6.279 | 6.454 | 7.07 | 7.773 | 8.763 | 10.83 |
| 1975 | 1.293 | 1.924 | 2.623 | 3.621 | 4.128 | 4.754 | 5.952 | 7.073 | 8.352 | 9.032 | 9.984 | 11.082 |
| 1976 | 1.162 | 1.79 | 3.074 | 3.291 | 4.579 | 4.648 | 5.116 | 6.314 | 7.069 | 7.069 | 7.808 | 9.714 |
| 1977 | 1.223 | 1.641 | 2.66 | 3.79 | 4.239 | 5.597 | 5.35 | 5.912 | 6.837 | 6.727 | 6.948 | 9.258 |
| 1978 | 1.493 | 2.324 | 3.068 | 3.746 | 4.913 | 4.368 | 5.276 | 5.832 | 6.053 | 6.706 | 7.686 | 8.516 |
| 1979 | 1.22 | 1.88 | 2.62 | 3.4 | 4.18 | 4.95 | 5.69 | 6.38 | 7.02 | 7.26 | 8.15 | 9.618 |
| 1980 | 1.23 | 2.12 | 3.32 | 4.28 | 5.16 | 6.42 | 6.87 | 7.09 | 7.93 | 8.07 | 8.59 | 10.142 |
| 1981 | 1.31 | 2.13 | 3 | 3.81 | 4.75 | 5.25 | 5.95 | 6.43 | 7 | 7.47 | 8.14 | 9.43 |
| 1982 | 1.337 | 1.851 | 2.951 | 3.577 | 4.927 | 6.243 | 7.232 | 7.239 | 8.346 | 8.345 | 8.956 | 10.227 |
| 1983 | 1.208 | 2.029 | 2.965 | 4.143 | 4.724 | 5.901 | 6.811 | 7.051 | 7.248 | 8.292 | 9.478 | 10.509 |
| 1984 | 1.431 | 1.953 | 2.47 | 3.85 | 5.177 | 6.347 | 7.825 | 6.746 | 8.636 | 8.467 | 8.556 | 10.802 |
| 1985 | 1.401 | 2.032 | 2.965 | 3.596 | 5.336 | 7.202 | 6.966 | 9.862 | 10.67 | 10.46 | 10.202 | 13.055 |
| 1986 | 1.718 | 1.986 | 2.618 | 3.277 | 4.186 | 5.589 | 6.05 | 6.15 | 9.536 | 9.823 | 7.303 | 12.773 |
| 1987 | 1.609 | 1.835 | 2.395 | 3.182 | 4.067 | 5.149 | 5.501 | 6.626 | 6.343 | 10.245 | 8.491 | 10.482 |
| 1988 | 1.5 | 1.975 | 1.978 | 2.937 | 3.798 | 4.419 | 5.115 | 6.712 | 9.04 | 9.364 | 9.142 | 10.216 |
| 1989 | 1.309 | 1.735 | 1.907 | 2.373 | 3.81 | 4.667 | 5.509 | 5.972 | 6.939 | 8.543 | 9.514 | 10.484 |
| 1990 | 1.223 | 1.633 | 1.83 | 2.052 | 2.866 | 4.474 | 5.424 | 6.469 | 6.343 | 8.418 | 7.383 | 8.64 |
| 1991 | 1.24 | 1.568 | 1.864 | 2.211 | 2.648 | 3.38 | 4.816 | 5.516 | 6.407 | 7.395 | 8.079 | 8.674 |
| 1992 | 1.264 | 1.602 | 2.069 | 2.554 | 3.057 | 4.078 | 5.012 | 6.768 | 7.754 | 8.303 | 7.786 | 9.301 |
| 1993 | 1.408 | 1.86 | 2.323 | 3.131 | 3.73 | 4.394 | 5.209 | 6.54 | 8.403 | 7.275 | 9.414 | 9.64 |


| CW | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{6}$ | $\mathbf{7}$ | $\mathbf{8}$ | $\mathbf{9}$ | 10 | 11 | 12 | 13 | $14+$ |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | ---: |
| 1994 | 1.503 | 1.951 | 2.267 | 2.936 | 4.214 | 4.971 | 5.657 | 5.95 | 6.891 | 8.752 | 9.752 | 7.989 |
| 1995 | 1.456 | 2.177 | 2.42 | 2.895 | 3.651 | 5.064 | 5.44 | 6.167 | 7.08 | 7.736 | 7.295 | 7.104 |
| 1996 | 1.432 | 1.875 | 2.496 | 3.229 | 3.744 | 4.964 | 6.375 | 6.745 | 7.466 | 7.284 | 8.47 | 10.125 |
| 1997 | 1.476 | 1.783 | 2.032 | 2.778 | 3.598 | 4.766 | 5.982 | 7.658 | 7.882 | 8.539 | 9.488 | 10.413 |
| 1998 | 1.388 | 1.711 | 1.954 | 2.405 | 3.3 | 4.22 | 4.999 | 6.391 | 6.665 | 8.214 | 8.485 | 8.845 |
| 1999 | 1.374 | 1.712 | 1.905 | 2.396 | 2.845 | 4.124 | 5.256 | 5.526 | 6.956 | 8.03 | 8.349 | 8.907 |
| 2000 | 1.477 | 1.606 | 2.077 | 2.36 | 2.977 | 3.48 | 4.851 | 5.268 | 6.523 | 4.727 | 8.807 | 8.972 |
| 2001 | 1.33 | 1.59 | 1.785 | 2.586 | 3.059 | 3.871 | 4.374 | 5.565 | 6.703 | 5.776 | 7.745 | 7.773 |
| 2002 | 1.142 | 1.46 | 1.652 | 1.969 | 3.13 | 3.589 | 4.513 | 5.138 | 6.422 | 8.026 | 4.759 | 11.357 |
| 2003 | 1.123 | 1.304 | 1.614 | 1.977 | 2.532 | 3.97 | 4.834 | 5.499 | 6.099 | 6.987 | 5.961 | 10 |
| 2004 | 1.143 | 1.333 | 1.45 | 1.789 | 2.56 | 3.159 | 4.154 | 5.167 | 6.015 | 6.186 | 7.056 | 9.391 |
| 2005 | 1.148 | 1.325 | 1.516 | 1.672 | 2.087 | 2.975 | 3.79 | 6.087 | 6.134 | 6.651 | 7.424 | 10 |
| 2006 | 1.126 | 1.218 | 1.462 | 1.79 | 2.035 | 2.436 | 3.861 | 4.222 | 5.149 | 6.437 | 6.905 | 5.365 |
| 2007 | 1.058 | 1.391 | 1.413 | 1.824 | 2.361 | 2.682 | 3.278 | 4.104 | 4.998 | 6.331 | 7.844 | 7.971 |
| 2008 | 1.146 | 1.312 | 1.672 | 1.816 | 2.395 | 2.902 | 3.1 | 3.728 | 4.769 | 6.072 | 6.451 | 10 |
| 2009 | 0.938 | 1.485 | 1.893 | 2.411 | 2.601 | 3.147 | 3.634 | 4.024 | 5.014 | 5.828 | 6.308 | 9.011 |
| 2010 | 1.429 | 1.706 | 2.166 | 2.551 | 3.172 | 3.411 | 3.972 | 4.352 | 5.083 | 4.941 | 5.305 | 10 |
| 2011 | 1.111 | 1.693 | 2.253 | 2.918 | 3.609 | 4.204 | 4.531 | 5.087 | 5.416 | 6.087 | 6.763 | 7.916 |
| 2012 | 1.029 | 1.334 | 1.626 | 2.709 | 3.785 | 4.448 | 4.799 | 5.207 | 5.562 | 6.018 | 7.143 | 6.247 |
| 2013 | 1.208 | 1.466 | 1.778 | 2.069 | 3.553 | 4.292 | 5.191 | 5.742 | 5.919 | 6.417 | 7.941 | 7.138 |
| 2014 | 1.369 | 1.724 | 2.163 | 2.868 | 3.325 | 5.903 | 5.899 | 6.877 | 6.784 | 7.467 | 7.121 | 11.31 |
| 2015 | 0.932 | 1.555 | 2.091 | 3.17 | 4.208 | 5.032 | 6.715 | 7.858 | 7.428 | 7.565 | 7.629 | 9.367 |
| 2016 | 1.295 | 1.120 | 1.997 | 2.719 | 4.076 | 5.373 | 5.935 | 6.826 | 6.710 | 7.150 | 7.564 | 9.272 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |

Table 6.2.4.1. Faroe saithe (Division 5.b). Proportion mature at age (1982-2015). Maturities-at-age from 1961 to 1981 are fixed and equal to those in 1982.

| MAT | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14+ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1982 | 0.03 | 0.22 | 0.52 | 0.79 | 0.92 | 0.98 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| 1983 | 0.03 | 0.27 | 0.61 | 0.91 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| 1984 | 0.04 | 0.28 | 0.60 | 0.88 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| 1985 | 0.05 | 0.29 | 0.59 | 0.85 | 0.97 | 0.99 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| 1986 | 0.05 | 0.28 | 0.57 | 0.82 | 0.94 | 0.98 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| 1987 | 0.05 | 0.27 | 0.55 | 0.79 | 0.92 | 0.97 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| 1988 | 0.05 | 0.26 | 0.53 | 0.77 | 0.90 | 0.96 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| 1989 | 0.04 | 0.23 | 0.51 | 0.76 | 0.89 | 0.96 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| 1990 | 0.03 | 0.19 | 0.49 | 0.75 | 0.89 | 0.96 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| 1991 | 0.03 | 0.17 | 0.48 | 0.75 | 0.88 | 0.96 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| 1992 | 0.02 | 0.17 | 0.48 | 0.75 | 0.89 | 0.97 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| 1993 | 0.02 | 0.17 | 0.49 | 0.77 | 0.91 | 0.99 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| 1994 | 0.01 | 0.17 | 0.49 | 0.78 | 0.93 | 1.00 | 0.99 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| 1995 | 0.01 | 0.17 | 0.49 | 0.78 | 0.93 | 1.00 | 0.99 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| 1996 | 0.01 | 0.17 | 0.47 | 0.75 | 0.90 | 1.00 | 0.99 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| 1997 | 0.01 | 0.16 | 0.44 | 0.70 | 0.87 | 0.98 | 0.99 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| 1998 | 0.02 | 0.16 | 0.41 | 0.64 | 0.83 | 0.96 | 0.99 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| 1999 | 0.02 | 0.16 | 0.38 | 0.60 | 0.79 | 0.94 | 0.98 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| 2000 | 0.02 | 0.16 | 0.37 | 0.58 | 0.77 | 0.92 | 0.98 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| 2001 | 0.01 | 0.17 | 0.37 | 0.56 | 0.75 | 0.91 | 0.98 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| 2002 | 0.01 | 0.17 | 0.37 | 0.56 | 0.74 | 0.89 | 0.98 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| 2003 | 0.01 | 0.18 | 0.37 | 0.56 | 0.74 | 0.88 | 0.97 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| 2004 | 0.01 | 0.18 | 0.38 | 0.57 | 0.74 | 0.88 | 0.97 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| 2005 | 0.00 | 0.18 | 0.39 | 0.59 | 0.76 | 0.89 | 0.97 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| 2006 | 0.00 | 0.18 | 0.40 | 0.62 | 0.78 | 0.90 | 0.97 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| 2007 | 0.00 | 0.19 | 0.42 | 0.64 | 0.80 | 0.91 | 0.97 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| 2008 | 0.01 | 0.20 | 0.43 | 0.66 | 0.82 | 0.92 | 0.97 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| 2009 | 0.01 | 0.21 | 0.45 | 0.68 | 0.84 | 0.94 | 0.97 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| 2010 | 0.02 | 0.23 | 0.47 | 0.71 | 0.87 | 0.95 | 0.97 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| 2011 | 0.03 | 0.24 | 0.49 | 0.72 | 0.88 | 0.96 | 0.98 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| 2012 | 0.03 | 0.25 | 0.50 | 0.73 | 0.89 | 0.97 | 0.98 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| 2013 | 0.04 | 0.25 | 0.50 | 0.74 | 0.90 | 0.97 | 0.98 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| 2014 | 0.04 | 0.26 | 0.51 | 0.74 | 0.90 | 0.98 | 0.98 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| 2015 | 0.05 | 0.26 | 0.51 | 0.74 | 0.9 | 0.98 | 0.98 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |

Table 6.3.1. Faroe saithe (Division 5.b). Effort (hours) and catch in number-at-age for the commercial pairtrawlers (1995-2015)

| YEAR | EFFORT | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1995 | 10883 | 47 | 180 | 577 | 236 | 146 | 49 | 24 | 19 | 14 |
| 1996 | 47531 | 310 | 958 | 821 | 1119 | 503 | 282 | 133 | 127 | 70 |
| 1997 | 34606 | 199 | 533 | 1488 | 1013 | 768 | 333 | 73 | 33 | 10 |
| 1998 | 34144 | 107 | 656 | 1148 | 1486 | 730 | 325 | 170 | 40 | 13 |
| 1999 | 43218 | 174 | 487 | 1554 | 2016 | 2024 | 817 | 190 | 83 | 12 |
| 2000 | 43920 | 434 | 1566 | 913 | 2700 | 1333 | 1604 | 192 | 106 | 31 |
| 2001 | 41534 | 611 | 1438 | 4946 | 1165 | 1855 | 748 | 618 | 127 | 29 |
| 2002 | 41575 | 133 | 3976 | 3964 | 6888 | 520 | 682 | 246 | 177 | 25 |
| 2003 | 38076 | 141 | 1494 | 6560 | 2373 | 2263 | 197 | 212 | 124 | 35 |
| 2004 | 35237 | 43 | 1200 | 5089 | 5116 | 1035 | 762 | 113 | 116 | 53 |
| 2005 | 32493 | 188 | 1189 | 4039 | 7266 | 3130 | 320 | 291 | 7 | 43 |
| 2006 | 25068 | 140 | 1176 | 2410 | 2584 | 3700 | 1376 | 268 | 85 | 14 |
| 2007 | 24885 | 204 | 879 | 2913 | 1815 | 1034 | 1215 | 435 | 110 | 19 |
| 2008 | 25014 | 796 | 762 | 947 | 2641 | 1063 | 726 | 611 | 156 | 51 |
| 2009 | 67648 | 154 | 4082 | 3377 | 1283 | 3612 | 1402 | 1153 | 751 | 195 |
| 2010 | 61407 | 459 | 2019 | 3586 | 737 | 657 | 1325 | 814 | 518 | 245 |
| 2011 | 58209 | 397 | 1936 | 1367 | 1257 | 323 | 356 | 488 | 366 | 310 |
| 2012 | 58244 | 366 | 5652 | 2332 | 756 | 554 | 187 | 189 | 252 | 143 |
| 2013 | 43770 | 424 | 3047 | 2462 | 1295 | 293 | 122 | 71 | 56 | 83 |
| 2014 | 48449 | 625 | 1624 | 2226 | 1200 | 613 | 216 | 72 | 70 | 50 |
| 2015 | 37639 | 437 | 1414 | 1645 | 1206 | 556 | 185 | 111 | 55 | 48 |

Table 6.3.2. Faroe saithe (Division 5.b). Diagnostics from XSA with commercial pairtrawler tuning series (spaly)

FLR XSA Diagnostics 2016-04-12 10:28:36
cpue data from indices
Catch data for 55 years 1961 to 2015. Ages 3 to 14 .
fleet first age last age first year last year alpha beta 1 PairTrawlers_GLM_SD 31119952015 <NA> <NA>

Time-series weights:
Tapered time weighting not applied
Catchability analysis :

Catchability independent of size for all ages
Catchability independent of age for ages > 8
Terminal population estimation :
Survivor estimates shrunk towards the mean F
of the final 5 years or the 3 oldest ages.
S.E. of the mean to which the estimates are shrunk $=2$

Minimum standard error for population
estimates derived from each fleet $=0.3$
prior weighting not applied
Regression weights
year
age 2006200720082009201020112012201320142015
$\begin{array}{lllllllllll}\text { all } & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1\end{array}$
Fishing mortalities
year
age 2006200720082009201020112012201320142015
30.0760 .0490 .1820 .0370 .1190 .0660 .0350 .0300 .0240 .038
40.1030 .2450 .2580 .4760 .3430 .2020 .5600 .3010 .1290 .080
50.2960 .3530 .4580 .8600 .7600 .4040 .5320 .5000 .3020 .206
60.4140 .4320 .5580 .4510 .4720 .6410 .4980 .6240 .3800 .307

```
70.6190.3670.456 0.701 0.480 0.374 0.795 0.388 0.5240.342
8 0.715 0.574 0.3840.501 0.700 0.503 0.436 0.422 0.469 0.322
90.4880.7370.600 0.5720.6810.5370.620 0.3120.3620.505
100.9080.6670.4850.7430.6210.6880.678 0.398 0.4110.621
1 1 0 . 5 1 8 0 . 7 3 1 0 . 6 0 5 0 . 6 9 6 ~ 0 . 6 4 1 0 . 8 0 8 ~ 0 . 7 5 8 ~ 0 . 5 6 9 ~ 0 . 5 7 1 0 . 6 2 6 ~
1 2 0 . 1 2 0 0 . 3 3 5 0 . 2 1 7 0 . 3 0 3 0 . 2 4 1 0 . 5 1 5 0 . 6 3 7 0 . 7 2 1 0 . 4 3 4 0 . 5 8 6 ~
130.2240.124 0.308 0.077 0.264 0.251 0.783 0.374 0.278 0.469
1 4 0 . 2 2 4 0 . 1 2 4 0 . 3 0 8 ~ 0 . 0 7 7 ~ 0 . 2 6 4 ~ 0 . 2 5 1 ~ 0 . 7 8 3 ~ 0 . 3 7 4 ~ 0 . 2 7 8 ~ 0 . 4 6 9 )
XSA population number (Thousand)
    age
year 
20062226456937 335242513224659813618335228711766 27
2007193451689442051204071359810873 3259 922173 43 85 28
200831701150861082824200 108517712501712773876825 0
20091406821626 9539560911335563243032254644173 45 15
201022830111021099933062926460527931988 878 263105 0
20113304516589645142111689148218721158875 379169 20
2012277882533811099 3526 1816 951 734 89547631918542
2 0 1 3 2 6 7 9 9 2 1 9 7 4 1 1 8 4 8 ~ 5 3 3 9 1 7 5 4 ~ 6 7 1 ~ 5 0 3 ~ 3 2 3 ~ 3 7 2 1 8 3 1 3 8 1 2 7 )
201440622 21289133115883 2343 974 360 302 178 173 73 5
20156283632463153288054 32951135499206164829144
Estimated population abundance at 1st Jan 2016
```

    age
    $\begin{array}{lllllllllll}\text { year } & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 1011 & 12 & 1314\end{array}$
2016474951524526102184850191767324690723747

Fleet: PairTrawlers_GLM_SD

Log catchability residuals.

```
    year
age 19095}191996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009
2010 2011 2012 2013 2014 2015
3 -0.441 0.440-0.006 0.355-0.926 0.475 -0.031-1.746-1.102-2.037-0.737 0.407 0.918 1.844-0.050
0.694 0.207 0.284 0.750 0.618 0.083
4 -0.057 -0.755 -0.550-0.638-0.202 -0.588-0.090 0.036 -1.101 -0.738-0.478 -0.470 0.528 0.499 0.921
0.921 0.466 1.275 0.969 0.190-0.141
5 0.437-0.670-0.690-0.441 -0.656 -0.208 0.023 0.381 0.062 -0.479 -0.050-0.100 -0.104 0.171 0.747
0.720 0.187 0.235 0.496 0.088-0.148
6 -0.196 -0.175-0.078-0.665-0.053 0.009 0.344 0.650}0.206 0.050 0.096 -0.049 -0.179 0.077-0.225-
0.145 0.274-0.120 0.344-0.038-0.128
7 0.164-0.398 0.231 0.066 -0.164-0.031 0.331 0.214 0.375 -0.006 0.179 0.295-0.489-0.201 0.091-
0.259-0.413 0.237-0.257 0.151-0.117
8 0.138 0.198 0.145 0.029 0.608 0.315 0.153 0.182 0.043 0.208-0.545 0.391 -0.076-0.337-0.307 0.021
-0.192 -0.422 -0.222 -0.103-0.225
9 0.005 0.435 0.041 0.286 0.021-0.078 0.453-0.158-0.123 0.523 0.315 0.147 0.171 0.016-0.202 0.025
-0.095-0.072 -0.525-0.256 0.169
    10-0.344 1.103 0.101 0.231 0.218 0.287 0.564 0.336-0.002 0.124-1.292 0.433 0.030-0.031 0.089-
0.113 0.163 0.042-0.281-0.085 0.404
\(11-0.0410 .147-0.363-0.043-0.526 \quad 0.052 \quad 0.081-0.007-0.293 \quad 0.137 \quad 0.068 \quad 0.251-0.0240 .096-0.026-\) 0.0360 .3280 .1400 .0480 .1790 .496
```

Mean $\log$ catchability and standard error of ages with catchability
independent of year-class strength and constant w.r.t. time

| 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Mean_Logq -15.4706-13.3917-12.4239-12.0639-11.9395-11.8752-11.8752-11.8752-11.8752
$\begin{array}{llllllllll}\text { S.E_Logq } & 0.4616 & 0.4616 & 0.4616 & 0.4616 & 0.4616 & 0.4616 & 0.4616 & 0.4616 & 0.4616\end{array}$

Terminal year survivor and F summaries:
,Age 3 Year class =2012
source
scaledWts survivors yrcls

PairTrawlers_GLM_SD 0.816538092012
fshk $\quad 0.184 \quad 342012012$
,Age 4 Year class =2011
source

| scaledWts survivors yrcls |  |  |
| :---: | :---: | :---: |
| PairTrawlers_GLM_SD | 0.887 | 213032011 |
| fshk 0.113 | 5676201 |  |
| ,Age 5 Year class =2010 |  |  |
| source |  |  |
| scaledWts survivors yrcls |  |  |
| PairTrawlers_GLM_SD | 0.944 | 88132010 |
| fshk 0.056 | 3562201 |  |
| ,Age 6 Year class =2009 |  |  |
| source |  |  |
| scaledWts survivors yrcls |  |  |
| PairTrawlers_GLM_SD | 0.97 | 42682009 |
| fshk 0.03 2 | 2513200 |  |
| ,Age 7 Year class =2008 |  |  |
| source |  |  |
| scaledWts survivors yrcls |  |  |
| PairTrawlers_GLM_SD | 0.969 | 17052008 |
| fshk 0.031 | 1155200 |  |
| ,Age 8 Year class =2007 |  |  |
| source |  |  |
| scaledWts survivors yrcls |  |  |
| PairTrawlers_GLM_SD | 0.97 | 5382007 |
| fshk 0.03 | 3852007 |  |
| ,Age 9 Year class =2006 |  |  |
| source |  |  |
| scaledWts survivors yrcls |  |  |
| PairTrawlers_GLM_SD | 0.964 | 2922006 |
| fshk 0.036 | 246200 |  |

,Age 10 Year class =2005
source

| PairTrawlers_GLM_SD | 0.909 | 1352005 |
| :---: | :---: | :---: |
| fshk 0.091 | 103200 |  |
| ,Age 11 Year class =2004 |  |  |
| source |  |  |
| scaledWts survivors yrcls |  |  |
| PairTrawlers_GLM_SD | 0.96 | 1182004 |
| fshk 0.04 | 652004 |  |
| ,Age 12 Year class =2003 |  |  |
| source |  |  |
| scaledWts survivors yrcls |  |  |
| fshk 1 44 2003 |  |  |
| ,Age 13 Year class =2002 |  |  |
| source |  |  |
| scaledWts survivors yrcls |  |  |

fshk $1 \quad 332002$

Table 6.5.1. Faroe saithe (Division 5.b). Fishing mortality-at-age (1961-2015). The value for 2016 is used for short-term prognosis.

| F | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14+ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1961 | 0.026 | 0.058 | 0.109 | 0.143 | 0.12 | 0.1 | 0.11 | 0.106 | 0.112 | 0.181 | 0.134 | 0.134 |
| 1962 | 0.052 | 0.101 | 0.127 | 0.156 | 0.143 | 0.099 | 0.138 | 0.149 | 0.125 | 0.098 | 0.124 | 0.124 |
| 1963 | 0.035 | 0.04 | 0.085 | 0.118 | 0.185 | 0.142 | 0.185 | 0.25 | 0.178 | 0.491 | 0.308 | 0.308 |
| 1964 | 0.052 | 0.144 | 0.251 | 0.218 | 0.236 | 0.301 | 0.18 | 0.241 | 0.248 | 0.235 | 0.243 | 0.243 |
| 1965 | 0.05 | 0.085 | 0.186 | 0.253 | 0.283 | 0.263 | 0.37 | 0.316 | 0.424 | 0.532 | 0.427 | 0.427 |
| 1966 | 0.026 | 0.103 | 0.167 | 0.283 | 0.348 | 0.35 | 0.308 | 0.456 | 0.433 | 0.493 | 0.464 | 0.464 |
| 1967 | 0.027 | 0.053 | 0.125 | 0.158 | 0.332 | 0.354 | 0.349 | 0.335 | 0.407 | 0.384 | 0.378 | 0.378 |
| 1968 | 0.03 | 0.099 | 0.098 | 0.14 | 0.156 | 0.307 | 0.326 | 0.358 | 0.258 | 0.467 | 0.363 | 0.363 |
| 1969 | 0.034 | 0.136 | 0.189 | 0.175 | 0.207 | 0.25 | 0.493 | 0.586 | 0.639 | 0.518 | 0.586 | 0.586 |
| 1970 | 0.044 | 0.262 | 0.142 | 0.179 | 0.16 | 0.202 | 0.206 | 0.39 | 0.431 | 0.609 | 0.48 | 0.48 |
| 1971 | 0.086 | 0.135 | 0.373 | 0.128 | 0.144 | 0.117 | 0.13 | 0.157 | 0.277 | 0.534 | 0.325 | 0.325 |
| 1972 | 0.094 | 0.07 | 0.148 | 0.316 | 0.293 | 0.354 | 0.4 | 0.49 | 0.541 | 0.73 | 0.592 | 0.592 |
| 1973 | 0.125 | 0.325 | 0.438 | 0.304 | 0.315 | 0.209 | 0.246 | 0.272 | 0.253 | 0.32 | 0.283 | 0.283 |
| 1974 | 0.222 | 0.311 | 0.358 | 0.307 | 0.192 | 0.195 | 0.164 | 0.237 | 0.207 | 0.227 | 0.225 | 0.225 |
| 1975 | 0.141 | 0.345 | 0.528 | 0.293 | 0.18 | 0.141 | 0.132 | 0.12 | 0.205 | 0.198 | 0.175 | 0.175 |
| 1976 | 0.196 | 0.34 | 0.298 | 0.328 | 0.208 | 0.16 | 0.129 | 0.137 | 0.122 | 0.149 | 0.136 | 0.136 |
| 1977 | 0.146 | 0.281 | 0.376 | 0.382 | 0.344 | 0.259 | 0.179 | 0.13 | 0.246 | 0.156 | 0.178 | 0.178 |
| 1978 | 0.085 | 0.233 | 0.267 | 0.163 | 0.18 | 0.375 | 0.272 | 0.259 | 0.228 | 0.307 | 0.266 | 0.266 |
| 1979 | 0.037 | 0.18 | 0.283 | 0.251 | 0.261 | 0.31 | 0.338 | 0.49 | 0.329 | 0.172 | 0.333 | 0.333 |
| 1980 | 0.088 | 0.153 | 0.205 | 0.224 | 0.281 | 0.195 | 0.258 | 0.415 | 0.386 | 0.226 | 0.344 | 0.344 |
| 1981 | 0.014 | 0.227 | 0.194 | 0.447 | 0.533 | 0.512 | 0.383 | 0.394 | 0.412 | 0.471 | 0.429 | 0.429 |
| 1982 | 0.028 | 0.184 | 0.188 | 0.477 | 0.329 | 0.502 | 0.399 | 0.191 | 0.315 | 0.477 | 0.33 | 0.33 |
| 1983 | 0.07 | 0.103 | 0.366 | 0.419 | 0.486 | 0.552 | 0.736 | 0.221 | 0.275 | 0.711 | 0.405 | 0.405 |
| 1984 | 0.016 | 0.498 | 0.332 | 0.575 | 0.535 | 0.451 | 0.558 | 0.292 | 0.224 | 0.265 | 0.262 | 0.262 |
| 1985 | 0.062 | 0.235 | 0.507 | 0.276 | 0.579 | 0.314 | 0.304 | 0.243 | 0.232 | 0.415 | 0.298 | 0.298 |
| 1986 | 0.021 | 0.137 | 0.452 | 0.774 | 0.375 | 0.785 | 0.518 | 0.578 | 0.895 | 0.518 | 0.67 | 0.67 |
| 1987 | 0.037 | 0.138 | 0.423 | 0.57 | 0.476 | 0.372 | 0.598 | 0.32 | 0.503 | 0.141 | 0.323 | 0.323 |
| 1988 | 0.022 | 0.089 | 0.355 | 0.631 | 0.576 | 0.629 | 0.47 | 0.649 | 0.167 | 1.598 | 0.813 | 0.813 |
| 1989 | 0.018 | 0.203 | 0.228 | 0.492 | 0.365 | 0.51 | 0.383 | 0.183 | 0.488 | 0.086 | 0.254 | 0.254 |
| 1990 | 0.016 | 0.203 | 0.626 | 0.783 | 0.8 | 0.391 | 0.202 | 0.208 | 0.196 | 0.29 | 0.232 | 0.232 |
| 1991 | 0.047 | 0.414 | 0.767 | 0.872 | 0.797 | 0.657 | 0.686 | 0.754 | 0.901 | 0.414 | 0.696 | 0.696 |
| 1992 | 0.03 | 0.262 | 0.595 | 0.707 | 0.547 | 0.48 | 0.556 | 0.455 | 0.452 | 0.726 | 0.549 | 0.549 |
| 1993 | 0.063 | 0.205 | 0.547 | 0.6 | 0.514 | 0.383 | 0.474 | 0.452 | 0.37 | 0.473 | 0.435 | 0.435 |
| 1994 | 0.046 | 0.274 | 0.333 | 0.596 | 0.598 | 0.651 | 0.44 | 0.695 | 0.557 | 0.333 | 0.533 | 0.533 |
| 1995 | 0.011 | 0.089 | 0.41 | 0.404 | 0.683 | 0.62 | 0.776 | 0.549 | 0.546 | 0.585 | 0.565 | 0.565 |
| 1996 | 0.014 | 0.039 | 0.137 | 0.3 | 0.484 | 0.755 | 0.513 | 0.612 | 0.353 | 0.484 | 0.487 | 0.487 |
| 1997 | 0.011 | 0.048 | 0.115 | 0.324 | 0.5 | 0.528 | 0.574 | 0.58 | 0.491 | 0.491 | 0.674 | 0.674 |
| 1998 | 0.014 | 0.071 | 0.15 | 0.238 | 0.454 | 0.52 | 0.694 | 0.583 | 0.567 | 1.376 | 0.49 | 0.49 |
| 1999 | 0.006 | 0.073 | 0.18 | 0.301 | 0.492 | 0.626 | 0.622 | 0.671 | 0.358 | 1.541 | 1.037 | 1.037 |
| 2000 | 0.025 | 0.068 | 0.234 | 0.417 | 0.469 | 0.721 | 0.518 | 0.724 | 0.588 | 0.502 | 0.403 | 0.403 |
| 2001 | 0.014 | 0.099 | 0.294 | 0.632 | 0.759 | 0.703 | 0.999 | 1.197 | 0.99 | 0.543 | 1.838 | 1.838 |
| 2002 | 0.003 | 0.14 | 0.371 | 0.66 | 0.563 | 0.659 | 0.472 | 0.841 | 0.382 | 1.753 | 0.348 | 0.348 |
| 2003 | 0.006 | 0.032 | 0.279 | 0.458 | 0.694 | 0.593 | 0.467 | 0.656 | 0.519 | 1.17 | 0.665 | 0.665 |
| 2004 | 0.002 | 0.043 | 0.148 | 0.369 | 0.474 | 0.726 | 0.988 | 0.711 | 0.786 | 2.449 | 1.134 | 1.134 |
| 2005 | 0.007 | 0.077 | 0.294 | 0.476 | 0.582 | 0.348 | 0.877 | 0.286 | 0.581 | 0.315 | 0.49 | 0.49 |


| F | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{6}$ | $\mathbf{7}$ | $\mathbf{8}$ | 9 | 10 | $\mathbf{1 1}$ | 12 | 13 | $\mathbf{1 4 +}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2006 | 0.076 | 0.103 | 0.296 | 0.414 | 0.619 | 0.715 | 0.488 | 0.908 | 0.518 | 0.12 | 0.224 | 0.224 |
| 2007 | 0.049 | 0.245 | 0.353 | 0.432 | 0.367 | 0.574 | 0.737 | 0.667 | 0.731 | 0.335 | 0.124 | 0.124 |
| 2008 | 0.182 | 0.258 | 0.458 | 0.558 | 0.456 | 0.384 | 0.6 | 0.485 | 0.605 | 0.217 | 0.308 | 0.308 |
| 2009 | 0.037 | 0.476 | 0.86 | 0.451 | 0.701 | 0.501 | 0.572 | 0.743 | 0.696 | 0.303 | 0.077 | 0.077 |
| 2010 | 0.119 | 0.343 | 0.76 | 0.472 | 0.48 | 0.7 | 0.681 | 0.621 | 0.641 | 0.241 | 0.264 | 0.264 |
| 2011 | 0.066 | 0.202 | 0.404 | 0.641 | 0.374 | 0.503 | 0.537 | 0.688 | 0.808 | 0.515 | 0.251 | 0.251 |
| 2012 | 0.035 | 0.56 | 0.532 | 0.498 | 0.795 | 0.436 | 0.62 | 0.678 | 0.758 | 0.637 | 0.783 | 0.783 |
| 2013 | 0.03 | 0.301 | 0.5 | 0.624 | 0.388 | 0.422 | 0.312 | 0.398 | 0.569 | 0.721 | 0.374 | 0.374 |
| 2014 | 0.024 | 0.129 | 0.302 | 0.38 | 0.524 | 0.469 | 0.362 | 0.411 | 0.571 | 0.434 | 0.278 | 0.278 |
| 2015 | 0.038 | 0.08 | 0.206 | 0.307 | 0.342 | 0.322 | 0.505 | 0.621 | 0.626 | 0.586 | 0.469 | 0.469 |
| 2016 | 0.022 | 0.121 | 0.239 | 0.311 | 0.298 | 0.288 | 0.280 | 0.340 | 0.419 | 1.00 | 1.00 | 1.00 |

Table 6.3.2. Faroe saithe (Division 5.b). Stock number-at-age (start of year) (Thousands)(1961-2015). The value for 2016 is used for short-term prognosis.

| YEAR | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14+ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1961 | 7827.26 | 7421.86 | 5158.38 | 3351.65 | 2113.91 | 1494.26 | 1232.82 | 904.51 | 468.22 | 179.78 | 53.02 | 431.33 |
| 1962 | 12256.26 | 6242.83 | 5733.57 | 3786.29 | 2379.45 | 1535.28 | 1106.68 | 904.39 | 666.35 | 342.63 | 122.76 | 592.7 |
| 1963 | 19837.08 | 9526.05 | 4620.77 | 4135.96 | 2652.05 | 1689.34 | 1138.44 | 789.35 | 638.21 | 481.32 | 254.28 | 182.18 |
| 1964 | 14811.8 | 15685.65 | 7491.63 | 3475.53 | 3010.73 | 1803.95 | 1200.34 | 774.64 | 503.3 | 437.46 | 241.15 | 224.48 |
| 1965 | 22362.95 | 11507.97 | 11115.9 | 4770.94 | 2287.23 | 1947.41 | 1093.3 | 820.79 | 498.49 | 321.58 | 283.06 | 239.61 |
| 1966 | 21229.3 | 17408.01 | 8652.81 | 7555.46 | 3032.95 | 1411.16 | 1226.14 | 618.24 | 490.13 | 266.98 | 154.71 | 232.85 |
| 1967 | 24897.69 | 16939.52 | 12859.03 | 5997.62 | 4660.34 | 1753.87 | 814.24 | 737.85 | 320.68 | 260.13 | 133.53 | 94.13 |
| 1968 | 22879.44 | 19846.12 | 13148.65 | 9293.88 | 4193.8 | 2736.99 | 1007.96 | 470.29 | 432.19 | 174.78 | 145.12 | 316.81 |
| 1969 | 39798.62 | 18176.53 | 14720.36 | 9755.41 | 6618.39 | 2937.74 | 1648.19 | 595.42 | 269.22 | 273.31 | 89.71 | 133.05 |
| 1970 | 37092.28 | 31506.69 | 12994.19 | 9976.32 | 6707.61 | 4407.07 | 1872.27 | 824.62 | 271.23 | 116.37 | 133.29 | 109.05 |
| 1971 | 38446.77 | 29061.1 | 19844.38 | 9229.01 | 6830.57 | 4678.28 | 2947.67 | 1246.96 | 457.08 | 144.25 | 51.84 | 130.67 |
| 1972 | 33424.52 | 28892.43 | 20792.77 | 11193.69 | 6646.71 | 4843.19 | 3405.88 | 2118.37 | 872.53 | 283.74 | 69.24 | 119.79 |
| 1973 | 23621.9 | 24909.95 | 22049.94 | 14681.96 | 6683.55 | 4058.37 | 2784.46 | 1868.28 | 1062.08 | 415.77 | 111.96 | 258.1 |
| 1974 | 19420.68 | 17064.31 | 14736.6 | 11651.24 | 8873.55 | 3993.53 | 2695.66 | 1782.06 | 1164.97 | 675.02 | 247.21 | 524.53 |
| 1975 | 17327.33 | 12729.76 | 10237.71 | 8436 | 7020.16 | 5997.37 | 2690.53 | 1874.04 | 1151.38 | 775.54 | 440.46 | 739.88 |
| 1976 | 19709.34 | 12320.65 | 7381.08 | 4942.64 | 5152.33 | 4802.07 | 4264.18 | 1929.56 | 1360.61 | 768.04 | 520.95 | 1132.95 |
| 1977 | 13106.22 | 13261.07 | 7176.43 | 4486.8 | 2915.65 | 3424.83 | 3351.6 | 3067.75 | 1378.01 | 986.39 | 541.95 | 815.92 |
| 1978 | 8333.03 | 9274.58 | 8199.74 | 4035.12 | 2508.05 | 1693.12 | 2163.39 | 2293.45 | 2205.83 | 882.1 | 690.86 | 837.17 |
| 1979 | 8686.42 | 6269.65 | 6016.26 | 5142.58 | 2807.83 | 1715.91 | 952.79 | 1349.58 | 1449.73 | 1437.71 | 531.28 | 1353.61 |
| 1980 | 13076.4 | 6852.15 | 4288.94 | 3712.31 | 3275.69 | 1770.43 | 1030.27 | 556.59 | 676.95 | 853.96 | 990.7 | 1390.35 |
| 1981 | 33145.83 | 9804.84 | 4816.52 | 2860 | 2430.42 | 2025 | 1192.53 | 651.69 | 300.97 | 376.9 | 558.01 | 2253.4 |
| 1982 | 15680.48 | 26765.62 | 6395.19 | 3247.62 | 1498.27 | 1168.27 | 993.78 | 666 | 359.83 | 163.17 | 192.76 | 3112.94 |
| 1983 | 40831.64 | 12487.92 | 18225.72 | 4336.53 | 1650.93 | 882.84 | 579.18 | 545.8 | 450.27 | 214.98 | 82.92 | 1368.23 |
| 1984 | 26079.33 | 31183.41 | 9226.21 | 10350.72 | 2335.26 | 831.39 | 416.07 | 227.17 | 358.19 | 279.98 | 86.43 | 840.01 |
| 1985 | 22341.19 | 21018.97 | 15516.98 | 5419.27 | 4770.95 | 1120.21 | 433.66 | 194.97 | 138.94 | 234.45 | 175.84 | 690.2 |
| 1986 | 61871.03 | 17183.9 | 13598.58 | 7652.52 | 3367.41 | 2188.74 | 670.13 | 261.85 | 125.24 | 90.23 | 126.8 | 154.27 |
| 1987 | 48649.53 | 49599.77 | 12262.02 | 7086.23 | 2890.31 | 1894.69 | 817.48 | 326.97 | 120.29 | 41.92 | 44.01 | 321.84 |
| 1988 | 44899.26 | 38400.32 | 35367.13 | 6576.48 | 3281.75 | 1470.6 | 1069.87 | 367.99 | 194.41 | 59.57 | 29.79 | 3.91 |
| 1989 | 28604.58 | 35976.81 | 28770.25 | 20310.44 | 2865.3 | 1510.58 | 642.12 | 547.48 | 157.41 | 134.74 | 9.87 | 132.42 |


| YEAR | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14+ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1990 | 20720.44 | 23011.37 | 24043.49 | 18759.45 | 10171.86 | 1628.37 | 742.71 | 358.33 | 373.13 | 79.11 | 101.27 | 222.62 |
| 1991 | 24974.51 | 16698.44 | 15371.87 | 10528.19 | 7017.24 | 3740.49 | 901.59 | 496.79 | 238.18 | 251.21 | 48.48 | 41.33 |
| 1992 | 19604.36 | 19515.42 | 9034.23 | 5842.58 | 3603.33 | 2590.06 | 1587.57 | 371.7 | 191.38 | 79.19 | 136 | 49.16 |
| 1993 | 23784.03 | 15579.27 | 12297.9 | 4078.56 | 2359.44 | 1707.82 | 1311.64 | 745.13 | 193.03 | 99.69 | 31.35 | 24.86 |
| 1994 | 16884.95 | 18281.95 | 10392.7 | 5825.89 | 1832.69 | 1155.39 | 953.06 | 668.51 | 388.37 | 109.18 | 50.85 | 5.3 |
| 1995 | 38977.69 | 13199.89 | 11383.93 | 6099.24 | 2627.18 | 825.47 | 493.54 | 502.52 | 273.17 | 182.25 | 64.05 | 48.15 |
| 1996 | 24412.3 | 31552.11 | 9885.13 | 6182.4 | 3332.35 | 1085.96 | 363.67 | 186.01 | 237.7 | 129.55 | 83.16 | 22.72 |
| 1997 | 33577.13 | 19718.36 | 24849.12 | 7056.31 | 3750.61 | 1682.31 | 417.69 | 178.31 | 82.62 | 136.7 | 65.35 | 51.17 |
| 1998 | 12772.68 | 27179.37 | 15391.2 | 18136.94 | 4178.37 | 1862.78 | 812.74 | 192.67 | 81.74 | 41.4 | 68.49 | 59.35 |
| 1999 | 58856.59 | 10309.89 | 20724.31 | 10851.3 | 11704.96 | 2173.19 | 907.11 | 332.43 | 88.08 | 37.97 | 8.56 | 62.19 |
| 2000 | 35923.96 | 47896.34 | 7848.36 | 14166.25 | 6576.05 | 5861.61 | 951.33 | 398.84 | 139.16 | 50.39 | 6.66 | 16.51 |
| 2001 | 88189.56 | 28678.22 | 36653.52 | 5082.91 | 7645.11 | 3369.85 | 2333.4 | 464 | 158.25 | 63.27 | 24.97 | 16.57 |
| 2002 | 106023.28 | 71185.56 | 21261.08 | 22375.25 | 2211.61 | 2929.49 | 1366.45 | 703.37 | 114.78 | 48.13 | 30.08 | 3.73 |
| 2003 | 64513.04 | 86531.26 | 50682.08 | 12012.46 | 9464.56 | 1030.75 | 1240.27 | 698.01 | 248.32 | 64.11 | 6.83 | 0 |
| 2004 | 54075.99 | 52520.21 | 68645.24 | 31404.23 | 6221.05 | 3869.89 | 466.59 | 636.32 | 296.41 | 120.97 | 16.3 | 3.19 |
| 2005 | 70045.1 | 44204.91 | 41180.29 | 48471.04 | 17783.42 | 3170.59 | 1533.36 | 142.23 | 255.86 | 110.57 | 8.56 | 0 |
| 2006 | 22264.39 | 56937.28 | 33524.46 | 25132.28 | 24659 | 8136.39 | 1833.08 | 522.49 | 87.49 | 117.19 | 66.1 | 27.39 |
| 2007 | 19344.73 | 16893.91 | 42051.4 | 20406.97 | 13598.46 | 10872.87 | 3259.33 | 921.7 | 172.61 | 42.68 | 85.08 | 28.26 |
| 2008 | 31700.64 | 15086.21 | 10827.5 | 24199.58 | 10850.8 | 7712.29 | 5016.58 | 1276.87 | 387.26 | 68.03 | 24.99 | 0 |
| 2009 | 14067.61 | 21625.54 | 9539.31 | 5609.2 | 11334.62 | 5631.9 | 4302.84 | 2254.12 | 643.67 | 173.19 | 44.84 | 14.9 |
| 2010 | 22829.91 | 11102.26 | 10998.84 | 3305.84 | 2925.72 | 4604.7 | 2793.19 | 1988.26 | 878.25 | 262.78 | 104.7 | 0 |
| 2011 | 33044.78 | 16588.71 | 6451.26 | 4211.26 | 1688.65 | 1482.39 | 1871.66 | 1157.63 | 875.02 | 378.83 | 169 | 19.77 |
| 2012 | 27787.98 | 25338.3 | 11098.81 | 3526.46 | 1815.56 | 950.95 | 734.12 | 895.38 | 476.37 | 319.19 | 185.29 | 42.14 |
| 2013 | 26799.38 | 21973.62 | 11847.98 | 5339.1 | 1754.36 | 671.2 | 503.5 | 323.26 | 372.05 | 182.81 | 138.27 | 126.63 |
| 2014 | 40621.85 | 21289.09 | 13310.66 | 5882.8 | 2342.64 | 973.98 | 360.42 | 301.84 | 177.8 | 172.5 | 72.76 | 4.52 |
| 2015 | 62836.26 | 32463.01 | 15328.09 | 8053.94 | 3295.4 | 1135.31 | 498.83 | 205.51 | 163.88 | 82.23 | 91.47 | 43.84 |
| 2016 | 29626 | 49527.71 | 24535.02 | 10213.26 | 4850.89 | $1916 . .55$ | 673.62 | 246.48 | 90.42 | 71.75 | 37.47 | 69.31 |

Table 6.3.3. Faroe saithe (Division 5.b). Summary table (1961-2015). Values for 2016-2018 are estimates.

| Recruits (age |  |  | Yield (tonnes) | Yield/SSB | Fbar(4-8) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| YEAR | 3) | SSB (TONNES) |  |  |  |
| 1961 | 7827 | 68467 | 9592 | 0,13 | 0.106 |
| 1962 | 12256 | 72862 | 10454 | 0,154 | 0.125 |
| 1963 | 19837 | 76441 | 12693 | 0.173 | 0.114 |
| 1964 | 14811 | 80928 | 21893 | 0,272 | 0.23 |
| 1965 | 22362 | 84690 | 22181 | 0,284 | 0.214 |
| 1966 | 21229 | 87313 | 25563 | 0.3 | 0.25 |
| 1967 | 24897 | 85361 | 21319 | 0.241 | 0.204 |
| 1968 | 22879 | 93938 | 20387 | 0,213 | 0.16 |
| 1969 | 39798 | 103452 | 27437 | 0,274 | 0.191 |
| 1970 | 37092 | 109688 | 29110 | 0,275 | 0.189 |
| 1971 | 38446 | 121970 | 32706 | 0,245 | 0.179 |
| 1972 | 33424 | 137957 | 42663 | 0,308 | 0.236 |
| 1973 | 23621 | 130735 | 57431 | 0.439 | 0.318 |
| 1974 | 19420 | 134010 | 47188 | 0,352 | 0.272 |
| 1975 | 17327 | 135485 | 41576 | 0,307 | 0.297 |
| 1976 | 19709 | 129100 | 33065 | 0.256 | 0.267 |
| 1977 | 13106 | 122228 | 34835 | 0,273 | 0.328 |
| 1978 | 8333 | 105218 | 28138 | 0,266 | 0.243 |
| 1979 | 8686 | 96038 | 27246 | 0.277 | 0.257 |
| 1980 | 13076 | 96219 | 25230 | 0,264 | 0.211 |
| 1981 | 33145 | 85058 | 30103 | 0,37 | 0.382 |
| 1982 | 15680 | 94394 | 30964 | 0,341 | 0.336 |
| 1983 | 40831 | 98647 | 39176 | 0,397 | 0.385 |
| 1984 | 26079 | 104718 | 54665 | 0,522 | 0.478 |
| 1985 | 22341 | 110024 | 44605 | 0,431 | 0.382 |
| 1986 | 61871 | 91607 | 41716 | 0.483 | 0.505 |
| 1987 | 48649 | 94334 | 40020 | 0,441 | 0.396 |
| 1988 | 44899 | 103062 | 45285 | 0,443 | 0.456 |
| 1989 | 28604 | 107481 | 44477 | 0.427 | 0.359 |
| 1990 | 20720 | 103321 | 61628 | 0,608 | 0.561 |
| 1991 | 24974 | 76297 | 54858 | 0,723 | 0.702 |
| 1992 | 19604 | 60153 | 36487 | 0.577 | 0.518 |
| 1993 | 23784 | 59452 | 33543 | 0,555 | 0.45 |
| 1994 | 16884 | 57615 | 33182 | 0,562 | 0.49 |
| 1995 | 38977 | 55735 | 27209 | 0.478 | 0.441 |
| 1996 | 24412 | 60797 | 20029 | 0,319 | 0.343 |
| 1997 | 33577 | 68468 | 22306 | 0,326 | 0.303 |
| 1998 | 12772 | 74278 | 26421 | 0,348 | 0.286 |
| 1999 | 58856 | 77828 | 33207 | 0,419 | 0.334 |
| 2000 | 35923 | 80608 | 39020 | 0,477 | 0.382 |
| 2001 | 88189 | 84237 | 51786 | 0.614 | 0.497 |
| 2002 | 106023 | 81993 | 53546 | 0.653 | 0.479 |
| 2003 | 64513 | 97592 | 46555 | 0,476 | 0.411 |
| 2004 | 54075 | 113454 | 46355 | 0,407 | 0.352 |


| Recruits (age |  |  | Yield (tonnes) | Yield/SSB | Fbar(4-8) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 2005 | 70045 | 128179 | 67967 | 0.53 | 0.355 |
| 2006 | 22264 | 127839 | 66902 | 0,525 | 0.429 |
| 2007 | 19344 | 121636 | 60785 | 0,501 | 0.394 |
| 2008 | 31700 | 105278 | 57044 | 0.537 | 0.423 |
| 2009 | 14067 | 94514 | 57949 | 0,606 | 0.598 |
| 2010 | 22829 | 70921 | 43885 | 0,618 | 0.551 |
| 2011 | 33044 | 57701 | 29658 | 0.514 | 0.425 |
| 2012 | 27787 | 49796 | 35314 | 0,709 | 0.564 |
| 2013 | 26799 | 46255 | 26463 | 0,572 | 0.447 |
| 2014 | 40621 | 58803 | 23885 | 0.406 | 0.361 |
| 2015 | 62836 | 77216 | 25128 | 0,325 | 0.251 |
| 2016 | 29626 | 96770 | 32085 |  | 0.251 |
| 2017 | 29626 | 126058 | 40403 |  | 0.251 |
| 2018 | 29626 | 144712 |  |  |  |
| Avg. | 31543 | 91844 | 36779 | 0.41 | 0.35 |

Table 6.6.1.1. Faroe saithe (Division 5.b). Input data for prediction with management options for the SPALY assessment.

| 2016 |  | M |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| AGE | N | M | MAT | PF | PM | SWT | SEL | CWT |
| 3 | 29626 | 0.2 | 0.04 | 0 | 0 | 1.295 | 0.027 | 1.295 |
| 4 | 49.528 | 0.2 | 0.26 | 0 | 0 | 1.120 | 0.121 | 1.120 |
| 5 | 24535 | 0.2 | 0.51 | 0 | 0 | 1.997 | 0.239 | 1.997 |
| 6 | 10213 | 0.2 | 0.74 | 0 | 0 | 2.719 | 0.311 | 2.719 |
| 7 | 4851 | 0.2 | 0.90 | 0 | 0 | 4.076 | 0.298 | 4.076 |
| 8 | 1917 | 0.2 | 0.98 | 0 | 0 | 5.373 | 0.288 | 5.373 |
| 9 | 674 | 0.2 | 0.98 | 0 | 0 | 5.935 | 0.280 | 5.935 |
| 10 | 246 | 0.2 | 1.00 | 0 | 0 | 6.826 | 0.339 | 6.826 |
| 11 | 90 | 0.2 | 1.00 | 0 | 0 | 6.710 | 0.419 | 6.710 |
| 12 | 72 | 0.2 | 1.00 | 0 | 0 | 7.150 | 1.000 | 7.150 |
| 13 | 37 | 0.2 | 1.00 | 0 | 0 | 7.564 | 1.000 | 7.564 |
| 14 | 69 | 0.2 | 1.00 | 0 | 0 | 9.272 | 1.000 | 9.272 |

2017 (

| AGE | N | M | MAT | PF | PM | SWT | SEL | CWT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3 | 29626 | 0.2 | 0.04 | 0 | 0 | 1.295 | 0.027 | 1.295 |
| 4 | - | 0.2 | 0.26 | 0 | 0 | 1.120 | 0.121 | 1.120 |
| 5 | - | 0.2 | 0.51 | 0 | 0 | 1.997 | 0.239 | 1.997 |
| 6 | - | 0.2 | 0.74 | 0 | 0 | 2.719 | 0.311 | 2.719 |
| 7 | - | 0.2 | 0.90 | 0 | 0 | 4.076 | 0.398 | 4.076 |
| 8 | - | 0.2 | 0.98 | 0 | 0 | 5.373 | 0.288 | 5.373 |
| 9 | - | 0.2 | 0.98 | 0 | 0 | 5.935 | 0.280 | 5.935 |
| 10 | - | 0.2 | 1.00 | 0 | 0 | 6.826 | 0.339 | 6.826 |
| 11 | - | 0.2 | 1.00 | 0 | 0 | 6.710 | 0.419 | 6.710 |
| 12 | - | 0.2 | 1.00 | 0 | 0 | 7.150 | 1.000 | 7.150 |
| 13 | - | 0.2 | 1.00 | 0 | 0 | 7.564 | 1.000 | 7.564 |
| 14 | - | 0.2 | 1.00 | 0 | 0 | 9.272 | 1.000 | 9.272 |


| 2018 |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| AGE | N | M | MAT | PF | PM | SWT | SEL | CWT |
| 3 | 29626 | 0.2 | 0.04 | 0 | 0 | 1.295 | 0.027 | 1.295 |
| 4 | - | 0.2 | 0.26 | 0 | 0 | 1.120 | 0.121 | 1.120 |
| 5 | - | 0.2 | 0.51 | 0 | 0 | 1.997 | 0.239 | 1.997 |
| 6 | - | 0.2 | 0.74 | 0 | 0 | 2.719 | 0.311 | 2.719 |
| 7 | - | 0.2 | 0.90 | 0 | 0 | 4.076 | 0.298 | 4.076 |
| 8 | - | 0.2 | 0.98 | 0 | 0 | 5.373 | 0.288 | 5.373 |
| 9 | - | 0.2 | 0.98 | 0 | 0 | 5.935 | 0.380 | 5.935 |
| 10 | - | 0.2 | 1.00 | 0 | 0 | 6.826 | 0.339 | 6.826 |
| 11 | - | 0.2 | 1.00 | 0 | 0 | 6.710 | 0.419 | 6.710 |
| 12 | - | 0.2 | 1.00 | 0 | 0 | 7.150 | 1.000 | 7.150 |

[^1]Table 6.6.2.1. Faroe saithe (Division 5.b). Prediction with management option for SPALY assessment.

| 2016 |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Biomass | SSB | FMult | FBar | Landings |  |  |
| 208397 | 96770 | 1.000 | 0.251 | 32086 |  |  |
| 2017 |  |  |  |  | 2018 |  |
| Biomass | SSB | FMult | FBar | Landings | Biomass | SSB |
| 232095 | 126058 | ก.0000 | 0.0000 | 0 | 288608 | 18.5585 |
|  | 126058 | 0.1000 | 0.0251 | 4520 | 283032 | 180964 |
|  | 126058 | 0.2000 | ก.0.503 | 8927 | 277606 | 176471 |
|  | 126058 | ก.3000 | ก. 0754 | 13209 | 272324 | 172103 |
|  | 126058 | 0.4000 | 0.1006 | 17386 | 267181 | 1678.56 |
|  | 126058 | 0.5000 | 0.1257 | 21455 | 262175 | 163726 |
|  | 126058 | 0.6000 | 0.1508 | 25419 | 257301 | 159709 |
|  | 126058 | 0.7000 | 0.1760 | 29282 | 252554 | 155803 |
|  | 126058 | 0.8000 | 0.2011 | 33047 | 247933 | 152003 |
|  | 126058 | 0.9000 | 0.2263 | 36715 | 243431 | 148308 |
|  | 126058 | 1.0000 | 0.2514 | 40291 | 239048 | 144712 |
|  | 126058 | 1.1000 | 0.2765 | 43776 | 234778 | 141215 |
|  | 126058 | 1.2000 | 0.3017 | 47174 | 230619 | 137813 |
|  | 126058 | 1.3000 | 0.3268 | 50486 | 226568 | 134503 |
|  | 126058 | 1.4000 | 0.3520 | 53715 | 222622 | 131282 |
|  | 126058 | 1.5000 | 0.3771 | 56864 | 218777 | 128148 |
|  | 126058 | 1.6000 | 0.4022 | 59934 | 215031 | 125099 |
|  | 126058 | 17000 | 0.4274 | 62928 | 211381 | 122131 |
|  | 126058 | 18000 | 0.4525 | 65848 | 207825 | 119243 |

Input units are thousands and kg - output in tonnes

Table 6.7.1.1. Faroe saithe (Division 5.b). Yield-per-recruit input data.

| AGE | M | MAT |  | PF |  | PM | WEST | SEL |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 3 | 0.2 | 0.02 | 0 | 0 | 1.304 | 0.048 | WECA |  |
| 4 | 0.2 | 0.21 | 0 | 0 | 1.304 |  |  |  |
| 5 | 0.2 | 0.47 | 0 | 0 | 2.031 | 0.278 | 1.668 |  |
| 6 | 0.2 | 0.71 | 0 | 0 | 2.602 | 0.5118 | 2.031 |  |
| 7 | 0.2 | 0.86 | 0 | 0 | 3.373 | 0.52 | 3.373 |  |
| 8 | 0.2 | 0.95 | 0 | 0 | 4.318 | 0.5648 | 4.318 |  |
| 9 | 0.2 | 0.99 | 0 | 0 | 5.085 | 0.5572 | 5.085 |  |
| 10 | 0.2 | 1 | 0 | 0 | 5.904 | 0.6514 | 5.904 |  |
| 11 | 0.2 | 1 | 0 | 0 | 6.777 | 0.7174 | 6.777 |  |
| 12 | 0.2 | 1 | 0 | 0 | 7.472 | 0.5888 | 7.472 |  |
| 13 | 0.2 | 1 | 0 | 0 | 7.835 | 0.4844 | 7.835 |  |
| 14 | 0.2 | 1 | 0 | 0 | 9.388 | 0.4844 | 9.388 |  |

Table 6.9.1. Faroe saithe (Division 5.b). Comparison between the current assessment (NWWG2016 SPALY) statistical assessment (NWWG2016 ADMB) and predictions from last year in the terminal year (2015).

|  | NWWG2015 <br> PREDICTION |  |  |  | NWWG2016 <br> (SPALY) | NWWG2016 (ADMB) |
| :--- | :--- | :--- | :--- | :---: | :---: | :---: |
| Recruitment | 27 mill. | 62 mill. | 36 mill. |  |  |  |
| SSB | $82089 \mathrm{t}$. | 77000 t. | 68278 t. |  |  |  |
| Fbar(4-8) | 0.310 | 0.25 | 0.32 |  |  |  |
| Landings | 35360 t. | 25128 t. | 26482 t. |  |  |  |

### 6.18 Figures



Figure 6.2.1.1. Faroe saithe (Division 5.b). Landings in 1000 tonnes (1961-2015). Horizontal red line represents historical average landings.


Figure 6.2.1.2. Saithe in the Faroes (Division 5.b). Cumulative domestic landings (2000-2016).


Figure 6.2.3.1. Faroe saithe (Division 5.b). Mean weight at age (kg) in commercial catches (ages 3-9) (1961-2018). Weights from 2016 to 2018 are estimates. Horizontal lines show historical average.


Figure 6.2.4.1. Faroe saithe (Division 5.b). Smoothed maturity ogives (ages 3-8)(1983-2015) from FGFS1 (spring survey). Horizontal lines show historical average.


Figure 6.2.5.1.1. Faroe saithe (Division 5.b). Predicted catch rates from the commercial fleet (pairtrawlers) used for tuning the assessment (black line). Catch rates (kg/hour) from the Faroese bottom-trawl fall FGFS2 (1996-2015)(red line) and spring survey FGFS1 (1994-2016)(blue line). Shade areas show standard errors in the estimation of indices.


Figure 6.2.5.1.2. Faroe saithe (Division 5.b). Length composition from the Faroese bottom-trawl spring survey FGFS1 (1994-2016)


Figure 6.2.5.1.3. Faroe saithe (Division 5.b). Length composition from the Faroese bottom-trawl summer survey FGFS2 (1996-2015)


Figure 6.2.5.1.4. Faroe saithe (Division 5.b). Age-disaggregated indices in the Faroese bottom-trawl spring survey FGFS1 (ages 3-10, years 1994-2016)


Figure 6.2.5.1.5. Faroe saithe (Division 5.b). Age-disaggregated indices in the Faroese bottom-trawl fall survey FGFS2 (ages 3-10, years 1996-2015)


Figure 6.2.5.1.6. Faroe saithe (Division 5.b). Numbers from spring survey (FGFS1) plotted against numbers of the same year class one year later. Letters in the figures represent year classes.


Figure 6.2.5.1.7. Faroe saithe (Division 5.b). Numbers from summer survey (FGFS2) plotted against numbers of the same year class one year later. Letters in the figures represent year classes.


Figure 6.2.5.2.1. Faroe saithe (Division 5.b). Age-disaggregated indices in the commercial pair-trawl fleet (ages 3-10, years 1995-2015)


Figure 6.2.5.2.2. Faroe saithe (Division 5.b). Indices from in the commercial pair-trawl plotted against indices of the same year class one year later. Letters in the figures represent year classes.


Figure 6.3.1. Faroe saithe (Division 5.b). Log-catchability residuals of the spaly assessment calibrated with the commercial series (ages 3-11, years 1995-2015). Blue and red bubbles represent positive and negative residuals respectively.
catch residuals


Figure 6.3.3. Faroe saithe (Division 5.b). Catch-(ages 3-14+, years 1961-2015)(top plot) and survey-at-age (ages 3-11, years 1995-2015)(bottom plot) residuals from a statistical catch-at-age model. Red and white bubbles represent positive and negative residuals respectively.


Figure 6.4.1.1. Faroe saithe (Division 5.b). EqSim simulation. Stock-recruitment function used in the simulations (Hockey-stick).


Figure 6.4.1.2. Faroe saithe (Division 5.b). EqSim simulation outputs with assessment errors and Hockey-stick function from WKMSYREF2 report. $B_{\text {lim }}$ is undefined but was set as $B_{\text {lim }}=B_{\mathrm{pa}} / 1.4$.


Figure 6.4.1.3. Faroe saithe (Division 5.b). Stock-recruitment plot in relation to $\mathrm{F}_{\text {low }}=0.13$ (lowest regression line), $\mathrm{F}_{\text {med }}=0.31$ (middle regression line) and Fhigh $=0.79$ (top regression line). Vertical red line represents $B_{\text {trigger }}=55000 t$.


Figure 6.5.1. Faroe saithe (Division 5.b). Recruitment (age 3) in millions (top-left), total-stock biomass (thousand tonnes)(top-middle), spawning-stock biomass (thousand tonnes) (bottom-left), landings (thousand tonnes)(middle-left), landings SSB ratio (middle-middle), Fbar (ages 4 to 8)(mid-dle-right), reference biomass (B4+) (thousand tonnes) (bottom-left) and landings B4+ ratio (bottomright). Black line represents the spaly run. Red lines show estimates from a catch-at-age statistical model implemented in ADMB. Horizontal blue lines represent historical averages.


Figure 6.5.2. Faroe saithe (Division 5.b). Fishing mortality (average over ages 4-8)(1961-2015)


Figure 6.5.3. Faroe saithe (Division 5.b). Recruitment-at-age 3 (millions)(1961-2016). The 2016 recruitment estimate is used in the short-term forecast.


Figure 6.5.4. Faroe saithe (Division 5.b). Spawning-stock biomass ('000 tonnes)(1961-2016). The 2016 SSB estimate is used in the short-term forecast. Horizontal lines represent $B_{\text {trigger }}=B_{\mathrm{pa}}=55000 \mathrm{t}$.


Figure 6.5.6. Faroe saithe (Division 5.b). Numbers of mature fish in the stock (ages 3-9) for 2006, 2013 and 2014.


Figure 6.5.7. Faroe saithe (Division 5.b). SSB Recruitment (age 3) plot. $B_{\text {trigger }}=B_{p a}=55000 \mathrm{t}$.


Figure 6.6.1.1. Faroe saithe (Division 5.b). Residual plots from a 3-year running average weight model and the model in which weights are predicted from the previous year in the same year class. Red and white bubbles represent positive and negative residuals respectively.


Figure 6.6.1.2. Faroe saithe (Division 5.b). Observed (stapled lines) and predicted weights (solid lines)(ages 4-8, years 1985-2015)


Figure 6.6.2.1. Faroe saithe (Division 5.b). Short-term prediction output (spaly assessment). Solid and broken lines represent landings ( $\mathbf{t}$ ) and spawning-stock biomass ( $\mathbf{t}$ ) respectively.


Figure 6.6.2.2 Faroe saithe (Division 5.b). Composition of landings (upper figure) and SSB (lower figure) by year classes in 2016.


Figure 6.7.1.1. Faroe saithe (Division 5.b). Yield and spawning per-recruit calculations. Dashed and solid lines represent Yield/R and SSB/R respectively.


Figure 6.8.1. Faroe saithe (Division 5.b). Retrospective analysis of recruitment-at-age 3 (millions)(top figure), spawning-stock biomass ('000 tonnes)(middle figure) and average fishing mortality over age groups 4-8 (bottom figure) from the spaly assessment.


[^0]:    * Asterisk indicates missing value(s).

[^1]:    Input units are thousands and kg - output in tonnes

